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The urgency is based on need for developing algorithms for detecting obstructive sleep apnea epi-
sodes in asthma patients. The main aim of the study was developing neural network model for breathing
analyses. It will allow recognition of breath patterns and predicting anomalies that may occur. Class of ma-
chine learning algorithms includes many models. Widespread feed forward networks are able to efficiently
solve task of classification, but are not quite suitable for processing time-series data. The paper describes
results of teaching and testing several types of dynamic or recurrent networks: NARX, Elman, distributed
and focused time delay. Methods, used in the study, include machine-learning algorithms such as dynamic
neural network architectures: focused time-delay network; distributed time-delay network; non-linear autore-
gressive exogenous model; using Matlab Neural Network Toolbox 2014a software. For the purpose of re-
search we used dataset, that contained 39 recording. Records were obtained by pulmonology department of
Third Tomsk City Hospital; typical recordings were 8—10 hours long and included electrocardiography and
oronasal airflow. Frequency of these signals was 11Hz. Results are presented as performance of training and
testing processes for various types of dynamic neural networks. In terms of classification accuracy the best
results were achieved by non-linear autoregressive exogenous model.
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time-series prediction

! The report study was partially supported by RFBR, research project Ne 14-07-00675. The article is written as a
part of the project Ne 1957 Government Task «Science» of the Ministry of Education of Russian Federation.
The article was presented at Joint Conference Knowledge Based Software Engineering 2014, Volgograd.
Pabora BemoxHeHa B pamkax mpoekra Ne 1957 Ioc. 3aganns «Hayka» MuHuCTEpcTBa 00pa30BaHUA M HAYKH
P®. Pabora Oprna mpeacraBincHa Ha MOxAyHapomHoit xoH(pepeHumn Joint Conference Knowledge Based
Software Engineering 2014, Boarorpaz,

144



IIPUKACIIHMCKHUM JKYPHAA:

yIIpaBA€HHE H BbICOKHE TeXHoaoTHH Ne 4 (28) 2014

OBPABOTKA CHUTHAAOB U TAHHBIX, PACIIOSHABAHHE OBPA30B,
BBISIBAEHUE 3AKOHOMEPHOCTEM U IIPOTHO3UPOBAHUE

HEMPOOUHAMHUYECKASI JUATHOCTHKA
HAPYILIIEHHH ABIXAHHSA BO BPEMA CHA

Heeamoix [Imumpuii Biaoumuposuu, actmpant, HanmmoHanbHBIA HCCIEIOBATECIbCKUM
Tomckuit mommrexamdecknid yausepentet, 634050, Poceriickas ®eaeparms, r. Tovek, np. mv. B.U. Jle-
HuHa, 30, e-mail: ddv.edu@gmail.com

T'epeem Onvea Muxaiiiosna, kaHaAUAAT TEXHUYCCKUX Hayk, HarmoHa pHBIN HCCICAOBA-
TeapCKUA TOMCKUN TMOMATCXHUYCCKHUH yHUBEpcUTETY, 634050, Poccmiickas ®exeparms, . Tomck,
mp. mm. B.M. Jlenuna, 30, e-mail: olgagerget@mail.ru

bepecmnesa Onvea I'pucopvesna, NOKTOp TEXHUUCCKUX HayK, npodeccop, HarponampHeri
nccneaosarenseknit Tomcknit monmnrexundecknit yausepeuter, 634050, Poccmiickas deneparus,
r. Tomck, p. mm. B .M. Jlenuna, 30, e-mail: ogb6@yandex.ru

AKTyambHOCTh PabOTHl 00YCIIOBICHA HCOOXOIMMOCTBIO Pa3pabOTKH ATOPHTMOB OOHAPYKCHHSA
CHHAPOMA COHHOTO aITHO? Y OOJBHBIX OPOHXHANBHBIX aCTMOH. Llembio paboThl SBILLIOCH HCClIeI0BAHHE (-
(peKTHBHOCTH HCIIOJIb30BAHUS HEHPOCETEBOTO MOAX0/A UL JIOKATH3AIUH STH3010B OOCTPYKTHBHOTO aIHO?
y OOIBHBIX OPOHXHATLHOM aCTMOM, CPABHUTCIIEHBIA aHATH3 3((PCKTHBHOCTH HCIIOIB30BAHNUA I 3TOH CTH
Pa3JIUIHBIX JHHAMHWYICCKHUX HeﬁpOCGTeBBIX APXHUTCKTYP. HCCJ’IGI[OB&J'II/ICB JAHAMHAYICCKHC HCKYCCTBCHHBIC
HEWPOHHBIC CETH TPEX THUIOB: C (DOKYCHPOBAHHON 3a/ICPKKOH 10 BPEMEHH, C PACIPEACICHHON 3a1ePKKOH
0 BpCMCHH, HCIHHCHHBIC ABTOPCTPCCCUOHHBIC MOACIN C BHCINHUMH BXOOAMH. HpI/IMeH}IJ'IC}I HpOI’paMMHBIfI
mpoxykT Matlab Neural Network Toolbox 2014a. B kauecTse Meroma 00yUCHHA HCHPOHHOM CETH HCTIOJIB30-
Bancs aproput™M Resilient Propagation. OcCoOOCHHOCTh METOAA 3aKIFOYACTCA B TOM, YUTO IS ONMPCICICHHS
BEJIMYHHBI KOPPEKTUPOBKY CHHANITHYECKOTO BECA HE TPEOYETCs] TOUHOTO 3HAYCHMS JIOKAJTBHOTO TPATHUCHTA.
Z[OCTaTO‘IHO OnpcaACiInThb, ABJLACTCA JIH JIOKAJIbHBIH TPAOUCHT MOJOKHUTCIBHBIM HJIH OTPULATCIBHBIM, H MC-
HAJI T OH CBOM 3HAK MO CPABHCHHIO C MPEAbIAYIIECH uTepauuci. B kauecTBe BXOJHBIX AAHHBIX, HA KOTOPBIX
00yJaich HEHPOHHBIC CETH, MCIOIB30BANACh 023 JAHHBIX MyJIbMOHOJIOTHYCCKOTO OTACICHUS TPETHEH To-
poackoit 6onpHUNEL r. ToMck. B Helt comepxamice 39 mosmcoMHOrpadMIeCKUX 3aUcel, TUITHYHAS JIIH-
TEJIBHOCTh KOTOPBIX cocTaBI:uIa 8—10 "yacoB. UacToTa B34THSA OTCUECTOB 3AIKMCH BO3AYIIHOIO MOTOKA COCTAB-
mina 11 I'm. JIns pa3aMiHbIX THIIOB THHAMHYCCKHX HEMPOHHBIX CeTeH OBLIH MPOBEICHHI MPOLECCH X 00Y-
YyeHWsI U TecTUpoBaHuss. CpaBHCHUE TOYHOCTH PE3YJIbTATOB, MONYUCHHBIX IPH padboTe ¢ ody4aromei u Tec-
TOBOH BBIOOPKAMH, MO3BOJAIO CACIATH BBHIBOA O TOM, YTO HamOoyee 3()(PEeKTHBHOS HCHPOCETCBOC PCIICHHC
JOJDKHO OCHOBBIBATHCA HA APXUTCKTYPC HCIHHCHHOH ABTOPECTPECCHUA C BHCITHUMH BXOJAMH.

KaroueBnie c/oBa: 0OCTPYKTHBHOEC COHHOC AMHO), TUHAMHYCCKHE HCHPOHHBIC CCTH, PSKYPPCHT-
HBIC HCHPOHHBIC CETH, 3a7CPKKA CHTHANA, 0OPATHBIC CBS3H, MAIIMHHOS OOYUCHHE, DIIACTHYHOES COMPOTHUBIIC-
HHE, PACIIO3HABAHUC 00PA30B, MPEACKA3ZAHUC BPEMEHHBIX PSAIOB

Introduction. Having both breath disorders during sleep and asthma may be described as a
collective term — overlap syndrome [15]. Degree of health damage that overlap syndrome does is
much worse than each of its components does by its own. The term health damage means reducing
performance of respiratory function [3, 16]. Thus, it is necessary to recognize and classify clinical
data and provide better ways of curing obstructive breathing disorders during sleep that asthma pa-
tients have. Nowadays analyzing polysomnography is common way of apnea diagnosing. It includes
several signals synchronous recording. Such signals usually are: electrocardiography, oronasal air-
flow, blood oxygen saturation. Such recording are usually obtained in sleep laboratories. The major-
ity of researches nowadays use polysomnography records to count minutes with apnea episodes dur-
ing an hour, amount of minutes with apnea episode defines apnea-hypopnea index that indicates dis-
case severity. Intelligent decision making systems may extend possibilities of apnea diagnosing [19].
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The purpose of this article is to research effect of dynamic neural network architecture on
accuracy of breath-patterns time-series classification and precise apnea episode detecting. Apnea
index was not counted, but exact start and end point of cach apnea episode were located.

Data. For the purpose of research we used dataset that contained 39 records. They were ob-
tained by pulmonology department of Third Tomsk City Hospital. Typical recordings durations
were 8—10 hours and included electrocardiography (ECG) and oronasal airflow. It is worth men-
tioning that amount of records is not equal to number of patterns that are going to be provided for
network during learning process. Patients with high severity of apnea may have 5-14 apnea epi-
sodes per hour. Whole dataset included approximately 1500 breath patterns that could be classified
as apnea episode. That amount of breath patterns combined with normal oronasal episodes was
enough to create not over-fitted and resistant to input signal variations network.

Frequency of polysomnography signals (ECG, oronasal airflow, chest movement) was
11Hz. Such frequency is not mandatory, but medical experts prefer 2—15 Hz polysomnography fre-
quency range because of ECG-derived methods are often used to derive respiration record. Main
power frequency of QRS-complex lies in 2—-15 Hz range. These particular parts of ECG record are
vital for breath pattern modeling, when there is no opportunity to record oronasal data.

The data was collected using hardware-software polygraph complex. It included ECG re-
cording module, three thermal sensors (two for nose and the last one for mouth) that provided oro-
nasal breath pattern and chest movement detectors. So polysomnography included ECG, oronasal
and chest movement data — they were recorded during patients sleep. Common sensors position
scheme on patient body is presented at fig. 1.
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Fig. 1. Polysomnography sensors location
(take from http://www.charlestonpulmonology.com/images/sleep-study2.JPG)

Most of the patients had asthma and represented wide age brackets (25-60 years old). Pa-
tients have not been divided by age or gender categories, dataset included both men and women.
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Each record has been preliminarily analyzed by sleep physiologists who marked obstructive
sleep episodes with high precision. Unlike most data sets that could provide information about apnea-
hypopnea index, our data was supported by annotations that revealed exact seconds when apnea be-
gan and when it did end. So each recording consists of two same dimensional time-series, the first
includes oronasal airflow value with 11 Hz frequency; the second — includes «0» and «1» values («0»
values correspond to «no apnea» while several «1» values flagged current segment of oronasal record
as «apnea episode».

Dynamic neural network architecture. An artificial neural network is a system, based on
the operation of biological neural networks. In other words, it emulates biological neural system.
As its biological predecessor it consists of neurons, basic elements of network. There are a large
number of different types of networks, but they all are characterized by the following components:
a set of neurons, and set of connections between them.

Artificial Neuron. The neuron, in its turn, consists of three basic elements. The synapses of
the biological neuron are modeled as weights. Let’s remember that the synapse of the biological
neuron is the one which interconnects the neural network and gives the strength of the connection.
For an artificial neuron, the weight is a number, and represents the synapse. A negative weight re-
flects an inhibitory connection, while positive values designate excitatory connections. The follow-
ing components of the model represent the actual activity of the neuron cell. All inputs are summed
altogether and modified by the weights. This activity is referred as a linear combination. Finally, an
activation function controls the amplitude of the output. For example, an acceptable range of output
is usually between 0 and 1, or it could be -1 and 1. At fig. 2 mathematical model of artificial neuron
is presented.
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Fig. 2. Artificial neuron mathematical model
From this model the interval activity of the neuron can be shown to be:
P
Vi Zzwqup (1)
j=1

where W,g- denotes weight of k-neuron connected with j-input from previous layer, V, is induced

local field on neuron (the weighted sum of all synaptic inputs).
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Activation Function. The output of the neuron, would therefore be the outcome of some
activation function on the value internal activity. As mentioned previously, the activation function
acts as a squashing function, such that the output of a neuron in a neural network is between certain
values. Common activation functions are logistic and hyperbolic tangent respectively:

@(v) =1/ (1+exp(-v)). 0
p(v) =(exp(2x)—1)/ (exp(2x)+1). 3)

These functions produce outputs between 0 and 1 or between -1 and 1 respectively. Also
should be mentioned that their derivatives are easy to be calculated, what is vital for training process.

Neural Network Topology. Neurons are used as basic building blocks for creating networks
of various architectures. Neural networks can be classified as dynamic and static categories. Static

(feedforward) networks have no feedback elements and contain no delays; the output is calculated
directly from the input through feedforward connections, multilayer perceptron is shown at fig. 3.
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Fig. 3. Feed-forward neural network architecture known as perceptron

Implicit time representation. Essential part of the network functioning is the time. It can be
represented in a continuous or discrete form, but no matter the form it takes, it is the basis of signal
processing. Embedding time neural network process operation can be realized implicitly for which time
has an indirect effect on the signal processing, i.¢. it is not supplied to the input neurons of the network.
The implicit representation of time allows to endow a static network with property of dynamic.

In order to transform static neural network into dynamic it is required to add memory fea-
ture [7]. There are long-term and short-term memory types. The long-term memory exists even in
the multilayer perceptron. It is integrated into the network during training procedure, when the in-
formative content of the training set of data stored in the network in the form of the weighting val-
ues. The simplest and most common form of short-term memory is implemented as a memory
based on the tapped delay line [11]. Fig. 4 shows a neuron with a built-in short-term memory based
on the tapped delay line and the static network. Input signal includes current value of x(») and

x(n—-1),x(n-2),...,x(n— p) past values that are being stored in short-term memory.

Another way of time representation in neural networks is applying feedback connections.
Whether feedbacks connect neurons from same or distant layers they are classified as local or global.
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Fig. 4. Static neural network with tap-delay memory line

Creating of dynamic neural network starts with choosing some static architecture like per-
ceptron and by adding local and global recurrent connection and tap delay memory. Amount of
possibilities and lack of methodology make this approach pretty complex, it bring wide specter of
dynamic forms of network which is hard to choose from. However, all these networks with various
forms of implicit-time representation may be classified as dynamic neural networks. Unlike static
networks they take into consideration temporal structure of the data [6].

To perform task of localizing and recognizing apnea episodes in breath patterns we ex-
perimented with three architectures of dynamic neural networks. These exact architectures were
chosen because each of them represents basic way of implementing one of the dynamic network
key topological features.

Focused Time Delay Neural Network (FTDNN). This topology of network is the most
straightforward. It involves static feed-forward network with tapped-delay input. It is a general dy-
namic network, dynamics appears only on stage of presenting input signal which is supplemented
by previous values. Despite being dynamic there is arguing whether this network is dynamic or
static because it may be presented as multi-layer perceptron with additional input neurons. How-
ever, it can use time-sequence as input, i.¢. input signal length is not restricted by amount of neu-
rons in input layer of the network.

Distributed Time Delay Neural Network (DTDNN). This topology of network implies
presence of tapped delay line memory not only for input signals, but also for hidden layer. That
means that we present current input signal to corresponding layer of network, additionally through
short-term memory lines we supplement network with past input signals. However, the activations
of hidden layer neurons are not instantly transferred to output neurons, but are circulating between
input and hidden layer to generate internal states of network.

Nonlinear Autoregressive Exogenous Inputs (NARX). Such models have much in com-
mon with distributed networks. The distinction lies in additional signals that are given to network.
While other dynamic networks may extract additional information from input sequence by using
past values of internal states. This topology allows supplementing of network with past values of
output signals.

The defining equation for the NARX model is

yO = f=D,y( =2),... y(t =n ) ut =Du = D,u(t-n,)) ¢

Here, y defines output at ¢ time step, # denotes input vector submitted to input layer at ¢
time step. The key feature of this architecture is that the next value of the output signal y(7) depends
on both past and input signals. Depending on current layer input signal may be taken from dataset
or from previous layer neuron. From equation (4) it remains unclear what types of output signals
should input neurons take. There are two ways to get previous output signals.
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Open loop. During supervised training of network the true output is known, and these true
outputs are send back to network for generating an output signal at 7 time step.

Close loop. In real life situations it is impossible to expect true output signals as previous
values for NARX network. In close loop state network use its actual output signals at previous
time-steps. Such state of network is usually turned on when training and validating processes are
complete. The difference between two states of network is visualized at fig. 5.
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Fig. 5. Parallel architecture (closed-loop) and series-parallel architecture (open-loop) scheme

Training process of dynamic neural networks. Having defined the choice of network ar-
chitecture, we proceed to the stage of training. The obvious question that arises when choosing a
method of optimization of weighting coefficients networks - is it possible to use the same techniques
that are used for the training of static networks? This is possible but the network has to be preliminary
transformed by expanding dynamic network in more cumbersome static network [8].

Figures 6a and 6b show an example of scanning the dynamic network Ellman with one in-
put and one hidden neurons in a static network. Arrows define flow of input signal while forward
propagation. Unfolded network has hidden neuron that is connected to itself via feedback, while
modified version is simple forward propagation network with additional layer. This method of un-
folding the network does not alternate algorithms for generating the output values and serves
mostly for convenient presentation of network in computing systems.

Input Hidden Output Output

x(n) neuron y(n)
Dr,x/ @
a)
Input Hidden Output Output
x(n) neuron y(n)
0 @
Input
x(n)
C
Hidden Output g
b) neuron y(n‘l‘l)

Fig. 6. Elman neural network: a) before unfolding; b) after unfolding

As seen from this figure, the dynamic network after conversion to static has much in com-
mon with the perceptron. Supervised learning algorithms based on error back propagation, are ap-
plicable for dynamic networks [5]. With such an unfolding every feedback leads to an additional
hidden layer, 1.e., the more feedback connects are implemented, the more hidden layers are added
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to unfolded version of network. One of the modern neural networks developing trends is associated
with the study of multilayer perceptrons with many hidden layers. These networks in the literature
are called «deep» [10]. One of the main problems faced by researchers when dealing with such
networks is the vanishing of gradients [9]. In this case, the network, even without being stuck in the
local minimum, ceases to learn, since according to the change weights formulas, the new values of
the weighting factors vary too slowly. This leads to requirements for teaching method in which the
changes of the weights coefficients are represented by

Aw(n)=nd,(n)y,(n) (5)
will not take into account exact value of local gradient
§,(n)=e (n)p(v,(n)), (6)

where €, (1) - error signal, 1] — constant that defines speed of weight changing.

For deep and unfolded dynamic networks same methods can be successfully applied. Ge-
netic algorithms [17] and resilient propagation, also known as an algorithm RProp [18] are prefer-
able. As for genetic algorithm, it is based on random search, it is heuristic way of optimization —
thus it do not require computing gradient values. Resilient propagation belong to group of gradient
search methods, but it requires only sign of gradient, change of weight mostly depends on whether
local gradient is positive or negative.

Resilient propagation algorithm is defined as

A, (n)=17"A, (), (BE(n) | w, OE(n—1)/ (dw,) > 0, 7
A, (n)=n"A,(n),(E(n)/ ow,)(OL(n-1)/ (ow,) <0, ®)
O0<n <l<n’, 9)

where OF /0w, =—e (n)@,(v,(n))y,(n). If current iteration derivative changed its sign it means

that last adjustment of weight was significant and local minimum was skipped by algorithm. Thus

. . + - . .
weight correction value should be changed from 7] to 77 , and return weight value to previous. If
sign of derivative remains the same, the previous correction value is summed with 77 . By locking

+ - . . . . .
1 and 1] values it is possible to get rid of constant values used in common back propagation al-

gorithm. Different variation of Rprop algorithm allows limitation of maximum and minimum cor-
rection applied to weights, weight initialization approaches.

Experimental results. This part reveals results of detecting sleep apnea using dynamic
neural networks with different architectures.

Training and testing datasets. To recognize apnea we used several dynamic neural network
types. As feature vectors we used two input signals from database. One of them took part in learning
process, another was picked for testing purposes. These signals are shown on figures 7a and 7b.

Input signals have different length, and that is significant advantage compared to static
network, that are suitable only for processing vectors of same dimensions. To each input signal, we
had corresponding target signals, designated in figures 8a and 8b. They may look similar, but it
should be considered that every target signal could be examined only in conjunction with corre-
sponding input signal.
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Fig. 8a. Learning target signal; 8b. Testing target signal

The more signals we present for learning the better network will work. However, training
and testing datasets consisted of relatively short (40-60 sec. long) segments of polysomnography
signals. The longer signals from training data set are, the more it will take to train network, but the
purpose was to compare effect of neural networks architecture on accuracy not training speed.
Short signals accommodated full apnea episodes and dataset that consisted of them did not increase
training time significantly.

Network Training and Topology Characteristics. We researched three different architec-
tures of network with several constants and variable parameters. Constants were the following.

e Training methods — resilient back propagation;

Neurons in hidden layer — 10;

Stop criteria:

Successful validation checks (30 % of learning input sequence);
Mean Square Error (MSE) value achieved (107);

Maximum amount of iterations achieved (1000);

Minimum performance gradient achieved (10).

Variable parameters are time-delays for layers of network. Each network has been trained
four times with one of stopping criteria being active. For each network we gained four training and
testing results, depending on what stop criteria finished training. From these results we chose those,

O O O O e o
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that provided lowest mean-square error. For creating, training and scoring network we used Mat-

Lab Neural Network Toolbox.

Apnea Detecting Results. Following tables represents network classification accuracy de-
pending on amount of time-delays and topology type.

Table 1
Focused time delay network apnea detecting results
Topology
FTDNN Amount of time delays for input layer
1 5 10 20 40 100

Lowest Train | Test | Train | Test | Train | Test | Train | Test | Train | Test | Train | Test
MSE of 4 0.022 | 0.106 | 0.012 | 0.110 | 0.002 | 0.157 | 1e-5 | 0.193 | 1*10® | 0.263 | 1*107 | 0.36
attempts

Focused delay showed that increasing time delays for input layer may increase perform-
ance during training, but it also reduces accuracy during testing process. Such tendencies took
place for all 4 stopping criteria applied. None of networks achieved appropriate accuracy for testing

sequence.
Table 2
Distributed time network apnea detecting results
Topology
DTDNN Amount of time delays for input : hidden layers
1:1 5:5 10:5 20:5 40:10 100:20
Lowest Train | Test | Train | Test | Train | Test | Train | Test | Train | Test | Train | Test
MSE of 4 0.012 | 0.118 | 0.004 | 0.112 | 9*10™ | 0.094 | 3*10™ | 0.113 | 4*10° | 0.17 | 1*10* | 0.5
attempts

For this type of network it is not necessary to set same amount of time delays for input and
hidden layers. Time delays for hidden layer significantly increased time of learning, not in terms of
amount iterations, but in term of computational speed. Focused time delay also did not manage to
achieve appropriate accuracy. For apnea detecting it is obvious that such types of dynamic net-
works like FTDNN and DTDNN require increasing of learning sequences. Even simple perceptron
can provide good results with good learning data set. Nevertheless, creating such small learning
sequence reveals abilities of networks.

NARX network showed best results. However, it required precise number of input and out-
put layer delays. Next table provides mean-square error values for training and testing in open-loop
state of network and close-loop as well.

Table 3
NARX apnea detecting results
Topology
Amount of time delays for input : output layers
NARX(open 1:1 55 10:10 20:20 40:40
-loop)
Train | Test Train | Test Train | Test Train | Test Train Test
1#107 | 5%107 | 1*10° | 0.921 | 8*10” [ 1.942 | 9*107 | 0.429 9%107 0.107
{\ll(i)l;i((close Train | Test | Train | Test | Train | Test | Train Test Train Test
0.337 | 0.312 | 0.98 2.32 1.152 | 2.316 | 2.561 | 3.017 1.125 1.141
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Amount of time delays for input : output layers
NARX(open 60:60 100:100 150:150 170:170 25:170
-loop)
Train Test | Train Test | Train | Test | Train Test Train Test
3#10° | 0.338 | 1*10° | 0.178 | 1*107 | 0.082 | 1*10% 0.08 1*¥10% | 0.064
{\lloop) (close Train Test | Train Test | Train | Test | Train Test Train Test
0.637 | 0.729 | 0.216 | 0.382 | 0.039 | 0.051 | 1*102 | 0.07 1*10™ 0.04

NARX network showed supremacy over distributed and focused delay networks in terms
of MSE in both closed and open-loop states. Even with small amount of learning and testing se-
quences it showed appropriate results. It is interesting that asymmetrical delays (input delays
amount was not equal to output) showed better accuracy than network with equally large amount of
delays. In medical terms apnea episode is supposed to be approximately 10 seconds long. Accord-
ing to frequency of our input signal which was 11Hz we can make a conclusion that time delays
should exceed or at least be equal to length of anomaly that we are going to detect in time-
sequence. But this rule should determine amount of time-delays only for output layer. Delays for
input layer however may be significantly smaller — this improves accuracy a little bit, but more im-
portantly it increases speed of learning because it exclude weights from network.

Conclusions. In this paper we presented results of apnea detecting by analyzing polysomno-
graphy data using dynamic neural networks. The main issue that we faced was finding appropriate
parameters of network, such as learning algorithm, amount of neurons in hidden layer, activation
functions and foremost number of time-delays for dynamic networks. Not all dynamic networks are
equally powerful, NARX network proved to be supreme in terms of accuracy. However, this type of
networks requires more complicated process of testing because of two states, that have been used
(open-loop, closed-loop) — so we had to calculate outputs twice. Assuming that in real-life medical
operations there will be no opportunity to instantly get real output values we put in priority closed-
loop state results. So if network would work accurately in open-loop, but would misclassify input
sequences in closed-loop state, we would consider such network as not appropriate. Although it was
not a purpose of research to evaluate speed of learning methods, the more time-delays we assigned,
the more iterations it was required to find adequate solution in terms of weights.

As future work we are planning to start using «Physyonet» data bases
(http://physionet.org/physiobank/database); increase learning and testing data sets for improving
generalization ability of network and implement genetic algorithm for training dynamic neural
networks.

Crncok aureparypsi

1. Aver C. Comparison of the ANN Based Classification accuracy for Real Time Sleep Apnea Detection
Methods / C. Avci, A. Akbas // The 9th International Conference on Biomedical Engineering (BIOMED 2012). — Inns-
bruck, 15-17 February, 2012. — P. 74-76.

2. Box G. E. P. Time series analysis: forecasting and control / G. E. P. Box, G. M. Jenkins, G. C. Reinsel. —
2011. - Vol. 734. - P. 197-199.

3. Cabrero-Canosa M. Intelligent Diagnosis of Sleep Apnea Syndrome / M. Cabrero-Canosa, E. Hernandez-
Pereira, V. MoretBonillo // Engineering in Medicine and Biology Magazine. — 2004. — Vol. 23, Ne 2. — P. 72-81.

4. Correa L. S. Sleep Apnea Detection Based on Spectral Analysis of Three ECG — Derived Respiratory Sig-
nals / L. S. Correa, E. Laciar, V. Mut, A. Torres, R. Jane // Annual International Conference of the IEEE Engineering in
Medicine and Biology Society. — 3-6 September, 2009. — P. 4723-4726.

5. Cuéllar M. P. An Application of Non-linear Programming to Train Recurrent Neural Networks in Time Se-
ries Prediction Problems / M. P. Cuéllar, M. Delgado, M. C. Pegalajar // Enterprise Information Systems VII (Springer
Netherlands). —2006. — P. 95-102.

154



IIPUKACIIHMCKHUM JKYPHAA:

yIIpaBA€HHE H BbICOKHE TeXHoaoTHH Ne 4 (28) 2014

OBPABOTKA CHUTHAAOB U TAHHBIX, PACIIOSHABAHHE OBPA30B,
BBISIBAEHUE 3AKOHOMEPHOCTEM U IIPOTHO3UPOBAHUE

6. Ebrahimi F. Automatic Sleep Stage Classification Based on EEG Signals by Using Neural Networks and
Wavelet Packet Coefficients / F. Ebrahimi, M. Mikaeili, E. Estrada, H. Nazeran // 30th Annual International IEEE Con-
ference. — Vancouver, 2008. —P. 1151-1154.

7. Elman J. L. Finding structure in time / J. L. Elman // Cognitive Science. — 1990. — Vol. 14 — P. 179-211.

8. Giles C. L. Extracting and learning an unknown grammar with recurrent neural networks/ C. L. Giles, C. B. Miller,
D. Chen, G. 7. Sun, H. H. Chen, Y. C. Lee // Advances in Neural Information Processing Systems 4. — San Mateo, CA :
Morgan Kaufmann Publishers, 1992. — P. 317-324.

9. Graves Alex and Schmidhuber Jirgen; Offline Handwriting Recognition with Multidimensional Recurrent
Neural Networks, in Bengio, Yoshua; Schuurmans, Dale / Lafferty, John, Williams, Chris K. 1.; and Culotta, Aron (eds.)
/1 Advances in Neural Information Processing Systems 22 (NIPS22). — Vancouver, BC : Neural Information Processing
Systems (NIPS) Foundation, 2009. — P. 545-552.

10. Hinton G. E. Deep Neural Networks for Acoustic Modeling in Speech Recognition: The shared views of
four research groups / G. E. Hinton, et al. // IEEE Signal Processing Magazine. — November 2012. — P. 82-97.

11. Jaeger H. (2001a) Short term memory in echo state networks / H. Jaeger // GMD Report 152. — GMD:
German National Research Institute for Computer Science, 2002.

12. Lawrence S. Natural language grammatical inference with recurrent neural networks / S. Lawrence, C. L. Giles,
S. Fong // IEEE Transactions on Knowledge and Data Engineering. — 2000. — Vol. 12 (1). — P. 126-140.

13. Lin R. A New Approach for Identifying Sleep Apnea Syndrome Using Wavelet Transform and Neural
Networks / R. Lin, R. Lee, C. Tseng, H. Zhou, C. Chao, J. Jiang // Biomedical Engineering: Applications, Basis & Com-
munications. —2006. — Vol. 18, no. 3. —P. 138-143,

14. Maali Y. Signal Selection for Sleep Apnea Classification / Y. Maali, A. Al-Jumaily // Advances in Artifi-
cial Intelligence. — 2012, Springer Berlin Heidelberg. — P. 661-671.

15. Mangat E. Sleep apnea, hypersomnolence and upper airway obstruction secondary to adenotonsillar
enlargement / E. Mangat, W. C. Orr, R. O. Smith // Arch. Otolaryngol. — 1977. — Vol. 103. — P. 383-386.

16. Newman A. B. Relation of sleep-disordered breathing to cardiovascular disease risk factors: The Sleep
Heart Health Study / A. B. Newman, F. J. Nieto, U. Guidry, B. K. Lind, S. Redline, E. Shahar, T. G. Pickering, S. F. Quan
// Am. J. Epidemiol. —2001. — Vol. 154. — P. 50-59.

17. Riedmiller M. Advanced supervised learning in multilayer perceptrons — from backpropagation to adap-
tive learning algorithms / M. Riedmiller // International Journal of Computer Standards and Interfaces. — 1994. — Vol. 16
(5). —P. 265-278.

18. Riedmiller M. A direct adaptive method for faster backpropagation learning: The Rprop algorithm. Pro-
ceedings of the IEEE International Conference on Neural Networks / M. Riedmiller, H. Braun. — IEEE Press, 1993. —
P. 586—3591.

19. Tagluk M. E. Classification of Sleep Apnea through Sub-band Energy of Abdominal Effort Signal Using
Wavelets and Neural Networks / M. E. Tagluk, N. Sezgin // Journal of Medical Systems. —2010. — Vol. 34, no. 6.

References

1. Aver C., Akbag A. Comparison of the ANN Based Classification accuracy for Real Time Sleep Apnea De-
tection Methods. The 9th International Conference on Biomedical Engineering (BIOMED 2012, Innsbruck, 15-17 Feb-
ruary, 2012, pp. 74-76.

2. Box G. E. P, Jenkins G. M., Reinsel G. C. Time series analysis: forecasting and control, 2011, vol. 734,
pp. 197-199.

3. Cabrero-Canosa M., Hernandez-Pereira E., MoretBonillo V. Intelligent Diagnosis of Sleep Apnea Syn-
drome / M. Cabrero-Canosa. Engineering in Medicine and Biology Magazine, 2004, vol. 23, no. 2, pp. 72-81.

4. Correa L. S., Laciar E., Mut V., Torres A., Jane R. Sleep Apnea Detection Based on Spectral Analysis of
Three ECG - Derived Respiratory Signals. Annual International Conference of the IEEE Engineering in Medicine and
Biology Society, 3—6 September, 2009, pp. 4723-4726.

5. Cuéllar M. P., Delgado M., Pegalajar M. C. An Application of Non-linear Programming to Train Recurrent
Neural Networks in Time Series Prediction Problem. Enterprise Information Systems VII (Springer Netherlands), 2006,
pp- 95-102.

6. Ebrahimi F., Mikaeili M., Estrada E., Nazeran H. Automatic Sleep Stage Classification Based on EEG Sig-
nals by Using Neural Networks and Wavelet Packet Coefficients. 30th Annual International IEEE Conference, Vancou-
ver, 2008, pp. 1151-1154.

7. Elman J. L. Finding structure in time.Cognitive Science, 1990. vol. 14, pp. 179-211.

8. GilesC. L., Miller C. B, Chen D., Sun G. 7., Chen H. H., Lee Y. C. Extracting and learning an unknown gram-
mar with recurrent neural networks. Advances in Neural Information Processing Systems 4, San Mateo, CA, Morgan
Kaufmann Publishers, 1992, pp. 317-324.

9. Lafterty, John; Williams, Chris K. 1.; Culotta Aron (eds.) Graves Alex and Schmidhuber Jirgen; Offline
Handwriting Recognition with Multidimensional Recurrent Neural Networks, in Bengio, Yoshua; Schuurmans, Dale.
Advances in Neural Information Processing Systems 22 (NIPS'22), Vancouver, BC, Neural Information Processing Sys-
tems (NIPS) Foundation Publ. House, 2009, pp. 545-552.

155



PRIKASPIYSKIY ZHURNAL: Upravlenie i Vysokie Tekhnologii

(CASPIAN JOURNAL: Management and High Technologies), 2014, 4 (28)
SIGNAL AND DATA PROCESSING, PATTERN RECOGNITION,
REVEALING OF REGULARITIES AND FORECASTING

10.Hinton G. E., et al. Deep Neural Networks for Acoustic Modeling in Speech Recognition: The
shared views of four research groups. /EEFE Signal Processing Magazine, November 2012, pp. 82-97.

11.Jaeger H. (2001a) Short term memory in echo state networks. GMD Report 152, GMD: German
National Research Institute for Computer Science Publ. House, 2002.

12.Lawrence S., Giles C. L., Fong S. Natural language grammatical inference with recurrent neural networks. /EEE
Transactions on Knowledge and Data Engineering, 2000, vol. 12 (1), pp. 126-140.

13.Lin R., Lee R., Tseng C., Zhou H., Chao C., Jiang J. A New Approach for Identifying Sleep Apnea Syn-
drome Using Wavelet Transform and Neural Networks. Biomedical Engineering: Applications, Basis & Communica-
tions, 20006, vol. 18, no. 3, pp. 138-143,

14.Maali Y., Al-Jumaily A. Signal Selection for Sleep Apnea Classification. Advances in Artificial Intelli-
gence, 2012, Springer Berlin Heidelberg, pp. 661-671.

15. Mangat E., Orr W. C., Smith R. O. Sleep apnea, hypersomnolence and upper airway obstruction secondary
to adenotonsillar enlargement. Arch. Otolaryngol, 1977, vol. 103, pp. 383-386.

16. Newman A. B., Nieto F. J., Guidry U, Lind B. K., Redline S., Shahar E., Pickering T. G., Quan S. F. Rela-
tion of sleep-disordered breathing to cardiovascular disease risk factors: The Sleep Heart Health Study. Am. J. Epidemiol.,
2001, vol. 154, pp. 50-59.

17. Riedmiller M. Advanced supervised learning in multilayer perceptrons — from backpropagation to adap-
tive learning algorithms. International Journal of Computer Standards and Interfaces, 1994., vol. 16 (5), pp. 265-278.

18. Riedmiller M., Braun H. 4 direct adaptive method for faster backpropagation learning: The Rprop algo-
rithm. Proceedings of the IEEE International Conference on Neural Networks, IEEE Press, 1993, pp. 586—591.

19. Tagluk M. E., Sezgin N. Classification of Sleep Apnea through Sub-band Energy of Abdominal Effort
Signal Using Wavelets and Neural Networks. Journal of Medical Systems, 2010, vol. 34, no. 6.

YK 004 .4, 004.62, 614

OBPABOTKA HHP®OPMAIIHMH O IIOKASATEASX 31OPOBbBS
B ITPOILIECCE ITPOBEJEHHS PETHOHAABHOI'O MOHHUTOPHHT A
3O0POBbLA ITKOABHHKOB

Cmamus nocmynuna peoaxyuro 26.11.2014, ¢ oxonuamensHom sapuanme 14.12.2014.

Jnooe Makcum Anexceesuu, actpant, TamMOOBCKHH TroCYJapCTBCHHBIH TEXHUYCCKUI
vaueepeuter, 392000, Poccmiickas ®enpepanusa, r. Tambos, ya. Coserckas, 106, e-mail:
lyadovmaxim(@gmail.com

@Dponoe Cepeeii Braoumupoeuu, TOKTOp TEXHHYCCKUX Hayvk, mpodeccop, TamOoBckuit
roCyJapCTBEeHHBIN TexHUuUecKuil yHuBepcutet, 392000, Poccuiickas ®eneparus, r. TamOos,
vi. Coserckas, 106, email: sergej.frolovi@gmail.com

Llenrro nccaenoBaHms ABACTCSA MOBBIMICHUS 3(PPCKTHBHOCTH METOINK COOpa H 00padoTkH HH(pOP-
MAaIl{ 0 MOKA3aTelsIX MHAWBUIYAJIbHOTO M OOIECTBEHHOTO 370POBbS B MPOLIECCE MPOBEACHUS PETHOHATb-
HOTO MOHHTOPHHTIA COCTOSTHHS 30POBbSI IKOIBLHUKOB, B TOM YHCJIC 3a00JICBAEMOCTH, CBI3aHHOM C aTHMCH-
TapHBIMH (pakropaMu. JIIs1 JOCTIKEHHS ITOCTABICHHON IIEMH pa3pabOTaHBI METOABI M ANTOPUTMBI, HPO-
TPaMMHOC M OPTaHH3ALHOHHO-MCTOIMICCKOS OOCCICUCHHE TIA OOpaOOTKH WH(POPMAIMH O IMOKA3ATCIIAX
30POBbBSI IIKOJIBHUKOB - C YUETOM COBPEMCHHBIX MCIHIMHCKHX METOJUK M IT0JIOBO3PACTHBIX HOPMATHBOB.
Pa3zpaboranras wmH(popMmarmonHas cuctema (MC) MOHHUTOpHWHTA BHCAPCHA B MYHHIIMIIAJIBHEIX 00pa3oBa-
TEJBHBIX YUPEKICHIAX, JICUCOHO-TTPOPUIAKTHUCCKIX YUPEKICHUSIX U IIEHTPE 00pabOTKU JaHHBIX TamMOO0B-
ckoit obnacru. Iloxyuennsie npu nomomm pazpadoraHaod MC MOHHTOpHHTa 310POBBSI IIKOJIBHHUKOB pe-
3yIBTATHI MOKA3AJH, YTO YIACTHE 00PA30BATEIBHBIX YUPEKICHAH B MPOCKTE MO MOJCPHU3ALMH IIKOIBHOTO
MUTAHWA, NMPEKIC BCETO BIMSCT HA TUHAMHKY MAcChl TE€JIA YUYCHHKOB, CTAOMJIBHOCTb MOKA3aTEICH ITHHBI
TEJIA M CHIDKCHHUE KOJIMUECTBA 3a00ICBaHUH, CBSI3aHHBIX C aTMMEHTapHBIMH (pakTopamu. Pazpaboranusie UC
W TEXHOIIOTHH €€ HCITOJb30BAHMS OOCCIICUYMBAOT BBHICOKYIO CTCIICHb ABTOMATH3AaLUH IIPOIECca 00pabOTKH
nH(pOpMAHH O MOKA3aTEISIX 3J0POBbS MIKOJFHHKOB HA YPOBHE 00PAa30BATEIBHOTO YUPEKACHHA, MYHHIIH-
TAJIHOM W PETHOHAJILHOM YPOBHSIX.

Kro1ueBbie CJI0Ba: MOHUTOPHHT 310POBBS, 3I0POBBE ETCH, aBTOMAaTH3UPOBAHHBIC HH(OPMAIIMOH-
HBIC CHCTEMBI, METO/IBI M AJTOPHTMBI 00paOb0TKH HH()OPMALIIH, ATUMEHTaPHBIE (PAKTOPBI
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