ПРИКАСПИЙСКИЙ ЖУРНАЛ: управление и высокие технологии № 4 (24) 2013 СИСТЕМНЫЙ АНАЛИЗ, МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

izmeritelnaya tekhnika [Information and Measuring Equipment]. Penza, Penza State University Publ., 2000, vol. 25, pp. 48–54.

- 7. Mizin I. A., Matveev A. A. Tsifrovye filtry [Digital filters]. Moscow, Radio i svyaz, 1979. 386 p.
- 8. Tadeusevich Ryshard, Borovik Barbara, Gonchazh Tomash Lepper, Bartosh. *Elementarnoe vvedenie v tekhnologiyu neyronnykh setey s primerami programm* [Elementary introduction to the technology of neural networks with the examples of programs], transl. from Polish I. D. Rudinsky. Moscow, Goryachaya liniya Telekom, 2011. 408 p.
- 9. Savochkin A. Ye. Primenenie neyrosetevogo podkhoda pri proektirovanii informatsionno-izmeritelnykh sistem dlya opredeleniya stepeni povrezhdeniya tekhnicheski slozhnykh obektov [The use of neural network approach in the design of information and measurement systems for the determination of the extent of damage of technically complex objects]. *Prikaspiyskiy zhurnal: upravlenie i vysokie tekhnologii* [Caspian Journal: Management and High Technologies], 2013, no. 2 (22), pp. 151–159.
- 10. Allinson N. M., Kolcz A.R. *Mathematics of Neural Networks: Models, Algorithms and Applications.* Softcover reprint of the original. 1st ed., 1997. 403 p.
- 11. Brian J. Taylor. *Methods and Procedures for the Verification and Validation of Artificial Neural Networks*. Springer, 2005. 280 p.
- 12. Battiti R. First and second order methods for learning: Between steepest descent and Newton's method. *Neural Computation*, 1992, vol. 4, no. 2, pp. 141–166.
- 13. Melanie Mitchell. *An Introduction to Genetic Algorithms*. Massachusetts, Institute of Technology, 1998. 280 p.
- 14. Riedmiller M., Braun H. A direct adaptive method for faster backpropagation learning: The PROP algorithm. *Proceedings of the IEEE International Conference on Neural Networks.* 1993.

УДК 539.193/.194;535/33.34

СТРУКТУРНО-ДИНАМИЧЕСКИЕ МОДЕЛИ 6-МЕТИЛУРАЦИЛА В КОНДЕНСИРОВАННОМ СОСТОЯНИИ

Статья поступила в редакцию 07.10.2013, в окончательном варианте 12.10.2013.

Элькин Михаил Давыдович, доктор физико-математических наук, профессор, Астраханский государственный университет, 414056, Российская Федерация, г. Астрахань, ул. Татищева, 20a, e-mail: elkinmd@mail.ru

ЛихтерАнатолий Михайлович, доктор технических наук, доцент, Астраханский государственный университет, 414056, Российская Федерация, г. Астрахань, ул. Татищева, 20a, e-mail: kof@aspu.ru

Кочергина Динара Даутовна, аспирант, Астраханский государственный университет, 414056, Российская Федерация, г. Астрахань, ул. Татищева, 20a, e-mail: d_kochergina@mail.ru

Шагаутдинова Ильмира Тауфиковна, аспирант, Астраханский государственный университет, 414056, Российская Федерация, г. Астрахань, ул. Татищева, 20a, e-mail: shagautdinova@list.ru

Равчеева Намалья Александровна, магистрант, Астраханский государственный университет, 414056, Российская Федерация, г. Астрахань, ул. Татищева, 20a, e-mail: Smolensk natali@mail.ru

В работе представлены результаты модельных расчетов колебательных состояний димеров 6-метилурацила. Геометрические параметры и частоты колебаний определены с помощью метода функционала плотности DFT/b3LYP.

На основании полученных результатов предложены структурно-динамические модели исследуемых соединений. Показано, что для спектральной идентификации димеров следует использовать значения интенсивностей полос, отнесенных к деформационным колебаниям связей NH (β_{NH}), а также валентных (q_{NH}) и неплоских деформационных (p_{NH}) связей NH.

PRIKASPIYSKIY ZHURNAL: Upravlenie i Vysokie Tekhnologii (CASPIAN JOURNAL: Management and High Technologies), 2013, 4 (24) SYSTEM ANALYSIS, MATHEMATICAL MODELING

По поведению интенсивностей и характеру смещения полос указанных колебаний по сравнению с мономером доказано наличие сильной водородной связи в димерах.

Ключевые слова: адиабатический потенциал, 6-метилурацил, урацил, деформационные колебания, димер, спектральная идентификация, ИК-спектр, КР-спектр

STRUCTURAL AND DYNAMIC MODELS OF 6-METHYL URACIL IN CONDENSED STATE

Elkin Mikhail D., D.Sc. (Physics and Mathematics), Professor, Astrakhan State University, 20a Tatischev St., Astrakhan, 414056, Russian Federation, e-mail: elkinmd@mail.ru

Likhter Anatoly M., D.Sc. (Engineering), Associate Professor, Astrakhan State University, 20a Tatischev st., Astrakhan, 414056, Russian Federation, e-mail: kofl@aspu.ru

Kochergina Dinara D., post-graduate student, Astrakhan State University, 20a Tatischev St., Astrakhan, 414056, Russian Federation, e-mail: d_kochergina@mail.ru

Shagautdinova Ilmira T., post-graduate student, Astrakhan State University, 20a Tatischev St., Astrakhan, 414056, Russian Federation, e-mail: shagautdinova@list.ru

Ravcheeva Natalya A., undergraduate student, Astrakhan State University, 20a Tatischev St., Astrakhan, 414056, Russian Federation, e-mail: Smolensk natali@mail.ru

There are the results of model calculations of dimers 6-methyluracil vibrational states in article. The geometrical parameters and oscillation frequency determined by the density functional method DFT/b3LYP.

Based on these results are suggested structural and dynamic models of research compounds. It is shown that the spectral identification of dimers should use the intensities of bands assigned to the deformation vibrations of NH (β_{NH}), and valence (q_{NH}) and non-planar deformation (ρ_{NH}) bonds NH.

On the behavior of the intensity and nature of the fringe shift of these vibrations as compared with the monomer proved the presence of strong hydrogen bonds in the dimers.

Keywords: adiabatic potential, 6-methyluracil, uracil, deformation vibrations, dimer, spectral identification, IR, Raman spectrum

Введение. В реальных условиях метилзамещенные урацила, как и все представители урациловых оснований ДНК, находятся в конденсированном (поликристаллическом) состоянии, образуя димеры с сильной водородной связью (NH---O=C).

В отличие от тимина (5-метилурацила), в доступной нам периодической литературе построению структурно-динамических моделей 6-метилурацилов уделено значительно меньше внимания. Можем сослаться на публикации [1, 4, 5, 8], но и они касаются интерпретации колебательного спектра мономера соединения.

Между тем, возможности современных неэмпирических и гибридных методов квантовой механики молекул, реализованные в виде сервисных компьютерных технологий, позволяют осуществить предсказательные расчеты геометрической и электронной структуры соединений урацилового ряда, получить достоверные данные о параметрах адиабатического потенциала молекул. Основанием для такого утверждения являются результаты построения структурно-динамических моделей ряда замещенных урацила, представленные, например, в публикациях [2, 6].

В данной работе на основании модельных квантовых расчетов геометрии и колебательных состояний всех возможных типов NH---О димеров 6-метилурацила в рамках метода функционала плотности DFT/b3LYP [7] предложены их структурно-динамические модели и выявлены признаки спектральной идентификации соединений.

Результаты модельных расчетов и их обсуждение. Представленные в табл. 1 оценки модельных расчетов геометрических параметров димеров 6-метилурацила позволя-

ют констатировать, что различие в соответствующих длинах валентных связей по сравнению с мономером составляет величину порядка 0,01 Å.

Таблица 1

Оптимизир	рованные знач	ения геометр	ических параметр	ов димеров о-	метилурацила
R(1,2)	1,37-1,40	R(5,11)	1,08-1,08	A(4,3,9)	116,4–117,7
R(1,6)	1,37–138	R(6,12)	1,50–1,50	A(3,4,5)	113,1–115,5
R(1,7)	1,01-1,03	A(2,1,6)	123,6–124,8	A(3,4,10)	120,0-121,0
R(2,3)	1,37-1,38	A(2,1,7)	114,3–115,9	A(5,4,10)	123,6-126,9
R(2,8)	1,21-1,23	A(6,1,7)	120,5–121,0	A(4,5,6)	120,6-121,2
R(3,4)	1,39–1,42	A(1,2,3)	113,3–114,6	A(4,5,11)	117,3–117,7
R(3,9)	1,01-1,03	A(1,2,8)	120,7–123,0	A(6,5,11)	121,6-121,9
R(4,5)	1,45-1,46	A(3,2,8)	122,5–124,9	A(1,6,5)	119,5–120,5
R(4,10)	1,21-1,23	A(2,3,4)	126,3–127,3	A(1,6,12)	115,2-116,1
R(5,6)	1,35–1,35	A(2,3,9)	115,7–116,9	A(5,6,12)	124,2–124,7

Примечание. Длины валентных связей R(i,j) в Å, значения валентных углов A(i,j,k) в град.

Для валентных углов такое различие составляет величину порядка $1,5^{\circ}$. Конформационная модель, при которой воспроизводятся крутильные колебания метильных групп, определяется двугранными углами D(5,6,12,H)=0, D(5,6,12,H)=120, D(5,6,12,H)=-120 (рис. 1).

Рис. 1. Молекулярная диаграмма 6-метилурацила

Для оценки колебательных состояний авторами использовано известное соотношение квантовой теории молекулярных колебаний:

$$E^{n} = v_{s}(n_{s} + \frac{1}{2}) + \chi_{sr}(n_{s} + \frac{1}{2})(n_{r} + \frac{1}{2}), \tag{1}$$

где ${\bf v}_{_{\rm S}}$ — частоты гармонических колебаний; ${\bf n}_{_{\rm S}}, {\bf n}_{_{\rm T}}$ — квантовые числа рассматриваемого колебательного состояния.

Оценки ангармонических констант χ_{sr} осуществлялись по соотношениям, предложенным в работе [3].

Весь набор фундаментальных колебаний димеров 6-метилурацила условно можно разделить на две группы. Первая группа (табл. 2, 3) касается колебаний урациловых фрагментов $C_4N_2O_2H_3X$ (X=CH₃) в диапазоне ниже 1800 см⁻¹, которые следует считать характеристическими по частоте и форме колебаний.

PRIKASPIYSKIY ZHURNAL: Upravlenie i Vysokie Tekhnologii (CASPIAN JOURNAL: Management and High Technologies), 2013, 4 (24) SYSTEM ANALYSIS, MATHEMATICAL MODELING

Таблица 2

Интерпретация фундаментальных колебаний в симметричных димерах 6-метилурацила

Форма	Форма изкеп		Лономер	-	Тых ди	78			8	-9	910		
колебаний	[1]	$\nu_{ m ahr}$	ИК	КР	$ u_{\text{анг}} $	ИК	КР	ν_{ahr}	ИК	КР	ИК	КР	
q _{C=O}	1752	1731	632	10	1791	655	120	1748	984	85	1153	22	
$q_{C=O}$	1738	1706	654	50	1765	2839	24	1730	1906	58	1945	194	
Q, β, γ	1663	1632	97	22	1687	230	18	1658	177	40	123	42	
β_{NH} , Q	1488	1515	69	16	1564	79	89	1497	118	36	160	46	
β_{NH} , Q	1409	1399	94	1,8	1443	425	6,3	1447	42	38	113	102	
β_{NH} , Q	1363	1356	93	9,2	1399	15	19	1395	513	5,8	208	27	
β , β_{NH}	1329	1344	24	1,2	1385	123	1,2	1326	50	1,6	85	2,2	
Q, β	1218	1185	21	19	1221	49	51	1209	52	31	20	46	
Q, β , β_{CH3}	1045	1046	22	3,2	1075	29	7,3	1051	34	6,4	39	17	
γ	1028	1014	11	1,4	1043	32	11	1029	29	3,4	39	3,7	
Q, Q_{CC}, γ	943	924	7,0	1,0	949	9,1	2,8	935	52	9,6	76	14	
γ	625	625	3,6	19	640	26	48	630	26	44	12	41	
$\beta_{C=O}$	570	584	5,0	1,4	598	44	5,2	589	16	2,0	11	2,2	
γ	526	523	16	3,6	535	107	8,6	532	55	7,6	40	11	
γ	496	496	6,6	2,7	507	17	8,9	498	51	8,5	78	9,6	
$\beta_{C=O}$	386	394	19	2,2	403	55	5,0	399	73	3,7	89	3,2	
ρ	828	821	46	1,0	843	46	1,2	826	47	2,3	47	2,5	
$\rho_{C=O}$, ρ_{CN}	731	758	46	0,0	778	51	0,2	758	20	0,6	30	0,5	
$\rho_{C=O}$, χ	700	715	5,1	0,9	733	7,7	2,0	733	17	1,8	22	1,1	
ρ_{NH} , χ , ρ_{CC}	520	547	32	2,3	560	2,8	2,1	520	53	4,6	54	5,3	

Примечание. Частоты колебаний v в см $^{-1}$, интенсивности в спектрах ИК в км/моль, в спектрах КР в Å 4 /аем.

Таблица 3

Интерпретация фундаментальных колебаний в несимметричных димерах 6-метилурацила

в несимметричных димерах о-метилурацила													
Форма	V _{эксп}	78'; 89'			98'; 109'			98'; 107'					
колебаний	[1]	ν_{ahr}	ИК	КР	$ u_{\text{анг}} $	ИК	КР	$ u_{\text{анг}} $	ИК	КР			
$Q_{C=O}$	1752	-	-	-	1763	511	11	1769	554	13			
$Q_{C=O}$	1738	1733	1069	111	1728	381	50	1728	413	50			
$Q_{C=O}$	-	1710	2087	33	1718	1358	4,4	1714	1401	6,9			
$Q_{C=O}$	-	-	-	-	1687	725	119	1673	973	124			
Q, β, γ	1663	1634	191	32	1631	160	39	1625	120	25			
β_{NH} , Q	1488	1511	64	38	-	-	-	1515	77	56			
β_{NH} , Q	-	1465	35	20	1473	135	39	1482	83	20			
β_{NH} , Q	1409	1427	30	16	1425	79	69	1428	70	49			
β , β_{NH}	-	1390	494	6,1	-	-	-	1397	202	2,8			
β_{NH} , Q	1363	-	-	-	1374	364	16	1378	56	8,9			
β_{NH} , Q	-	1357	31	9,0	-	-	-	1356	24	8,4			
β_{NH} , Q	1329	1340	28	2,1	-	-	-	1342	33	1,9			
β_{NH} , Q	-	1308	32	0,7	1306	69	2,1	1305	46	0,8			
Q, β	1218	1188	54	41	1192	37	39	1188	28	58			
Q, β, Q_{CC}	1142	1144	1,1	2,5	1144	3,1	3,3	1150	2,8	2,5			
Q, β , β_{CH3}	1045	1043	31	6,1	1037	36	10	1040	19	3,5			

ПРИКАСПИЙСКИЙ ЖУРНАЛ: управление и высокие технологии № 4 (24) 2013 СИСТЕМНЫЙ АНАЛИЗ, МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

γ	1028	1015	31	7,6	1015	33	3,6	1016	39	10
Q, Q _{CC} , γ	943	922	33	5,9	922	63	11	924	45	6,9
ν, ν,	625	623	30	45	623	19	43	624	18	44
$\beta_{C=O}$	570	583	23	4,3	582	14	1,7	584	21	3,5
γ	526	524	84	8,1	525	50	9,5	526	76	8,5
γ	496	493	33	8,6	492	63	9,1	495	37	9,5
$\beta_{C=O}$	386	393	63	4,1	395	80	3,5	395	72	3,8
ρ	828	814	101	1,5	816	48	2,4	812	44	2,4
$\rho_{C=0}, \rho_{CN}$	731	753	36	0,5	749	24	0,5	754	42	0,3
ρ _{C=O} , χ	700	717	11	1,9	723	20	1,5	719	17	1,4
ρ _{NH} , χ, ρ _{CC}	520	546	1,5	1,0	-	-	-	534	37	5,7
ρ _{NH} , χ, ρ _{CC}		510	27	2,3	513	54	4,9	-	-	-

Поэтому для спектральной идентификации димеров в указанном частотном диапазоне следует использовать значения интенсивностей полос, отнесенных к деформационным колебаниям связей NH (β_{NH}). Для симметричных димеров (тип симметрии C2h) имеет место правило альтернативного запрета на интенсивности в спектрах ИК и KP.

Вторая группа фундаментальных колебаний димеров 6-метилурацила связана с валентными (q_{NH}) и неплоскими деформационными (ρ_{NH}) колебаниями связей NH, участвующими в образовании водородных связей между мономерами (табл. 4, 5). Согласно модельным расчетам длины этих связей оцениваются величиной $\sim 1,78$ Å в димерах N1H7---О8 и вплоть до величин $\sim 1,84$ Å и 1,88 Å в димерах N3H9---О8 и N3H9---О10 соответственно.

Интерпретация колебаний связей NH в симметричных димерах 6-метилурацила

Voron	M	ономер)	ν _{эксп}	Димер 78			Димер 89			Димер 910		
ν _{эксп} [1]	$ u_{ahr}$	ИК	КР	[4]	ν_{ahr}	ИК	КР	$ u_{\rm ahr}$	ИК	КР	ν_{ahr}	ИК	КР
$q_{ ext{NH}}$													
3484	3462	75	73		3428	121	159	3450	150	-	3449	196	-
3435	3446	64	87	3124	3122	2712	-	3199	1944	-	3143	2106	-
				3107	3085	-	307	3172	-	132	3106	-	777
	$ ho_{ m NH}$												
662	673	86	2.4	894	681	95	4,9	885	192	-	911	178	-
551	565	14	0.1	861	856	192	-	575	77	-	580	74	-

Таблица 5

Интерпретация колебаний связей NH в несимметричных димерах 6-метилурацила

78_9-8				98_109				107_98				
ν _{эксп} [4]	ν_{ahr}	ИК	КР	ν _{эксп} [4]	$ u_{\text{ahr}}$	ИК	КР	ν _{эксп} [4]	$ u_{\text{анг}} $	ИК	КР	
${\mathfrak q}_{ m NH}$												
3448	3452	72	66	3461	3451	76	70	3442	3446	82	97	
3770	3427	62	80	3401	3449	74	91	3442	3428	61	81	
3148	3164	2269	35	3159	3173	2112	21	3115	3127	2582	5,4	
3170	3128	56	640	3137	3138	151	687	3113	3089	3,5	73	
					ρ_1	NH						
890	890	136	-	901	899	176	-	894	896	146	0,1	
818	825	3,4	0,7	872	869	8,2	0,1	839	838	38	0,2	
669	665	46	2,5	565	580	35	-	669	666	48	2,6	
557	573	38	_	303	575	40	_	581	585	40	0,1	

PRIKASPIYSKIY ZHURNAL: Upravlenie i Vysokie Tekhnologii (CASPIAN JOURNAL: Management and High Technologies), 2013, 4 (24) SYSTEM ANALYSIS, MATHEMATICAL MODELING

Как и следовало ожидать, характер смещения полос указанных колебаний по сравнению с мономером и поведение интенсивностей полос полностью соответствуют наличию сильной водородной связи в рассматриваемом соединении. Полосы могут быть использованы для спектральной идентификации всех типов димеров исследуемого соединения.

Заключение. Представленные результаты модельных квантовых расчетов структуры и спектров 6-метилурацила дают основание утверждать, что метод функционала плотности DFT/b3LYP позволяет осуществлять достоверные предсказательные расчеты параметров структурно-динамических моделей данного класса замещенных урацила, выявлять признаки их спектральной идентификации, устанавливать общие закономерности в характере поведения полос соединения при его димеризации.

Список литературы

- 1. Элькин М. Д. Проявление межмолекулярного взаимодействия в димерах урацила / М. Д. Элькин, Е. А. Джалмухамбетова, О. Н. Гречухина // Изв. Сарат. гос. ун-та. Нов. сер. Физика. 2008. Т. 8, вып. 2. С. 25–29.
- 2. Элькин М. Д. Моделирование адиабатических потенциалов моногидроксиазаурацилов в конденсированном состоянии / М. Д. Элькин, В. В. Смирнов, Е. А. Джалмухамбетова, О. Н. Гречухина, О. М. Алыкова, А. Р. Гайсина, Н. А. Равчеева // Прикаспийский журнал: управление и высокие технологии. -2013. -№ 2 (23). C. 66–72.
- 3. Элькин М. Д. Учет ангармонического смещения полос в модельных расчетах колебательных спектров димеров с водородной связью / М. Д. Элькин, Л. М. Бабков // Изв Сарат. гос. ун-та. Нов. сер. Физика. -2011.-T. 11, вып. 1.-C. 20–25.
- 4. Элькин П. М. Анализ колебательных спектров метилзамещенных урацила в ангармоническом приближении / П. М. Элькин, М. А. Эрман, О. В. Пулин // Журнал прикладной спектроскопии. -2006. Т. 73, N 4. С. 431–436.
- 5. Элькин П. М. Математическое моделирование структуры и динамики димеров урацила и азаурацилов / П. М. Элькин, М. А. Эрман, В. М. Карташов // Изв. Волг. гос. тех. ун-та. -2012. -№ 10 (97). C. 55–62.
- 6. Эрман Е. А. Структурно-динамические модели и колебательные состояния димеров хлорурацила / Е. А. Эрман, М. Д. Элькин, А. М. Лихтер, Е. А. Джалмухамбетова, О. М. Алыкова, Н. А. Равчеева // Естественные науки. − 2012. № 2. С. 220–227.
 - 7. Frisch M. J. Gaussian / M. J. Frisch, G. W. Trucks, H. B. Schlegel. Pittsburgh PA, 2003.
- 8. Tabish R. Computational stadies of vibrational spectra and molecular properties of 6-methyluracil using HF, DFT and MP2 methods / R. Tabish, S. Ahmad // Indian J. Phys. 2011. Vol. 85 (2). P. 239–260.

References

- 1. Elkin M. D., Dzhalmukhambetova Ye. A., Grechukhina O. N. Proyavlenie mezhmolekulyarnogo vzaimodeystviya v dimerakh uratsila [The manifestation of intermolecular interaction in uracil dimers]. *Izvestiya Saratovskogo gosudarstvennogo universiteta. Novaya seriya. Fizika* [Proceedings of Saratov State University. New Series. Physics], 2008, vol. 8, no. 2, pp. 25–29.
- 2. Elkin M. D., Smirnov V. V., Dzhalmukhambetova Ye. A., Grechukhina O. N., Alykova O. M., Gaysina A. R., Ravcheeva N. A. Modelirovanie adiabaticheskikh potentsialov monogidroksiazauratsilov v kondensirovannom sostoyanii [Modeling of the adiabatic potentials monohydroxyazauracil in the condensed state]. *Prikaspiyskiy zhurnal: upravlenie i vysokie tekhnologii* [Caspian Journal: Management and High Technologies], 2013, no. 2 (23), pp. 66–72.
- 3. Elkin M. D., Babkov L. M. Uchet angarmonicheskogo smeshcheniya polos v modelnykh raschetakh kolebatelnykh spektrov dimerov s vodorodnoy svyazyu [Account of anharmonic bond shift in model calculations of the vibrational spectra of hydrogen-bonded dimers]. *Izvestiya Saratovskogo gosudarstvennogo universiteta. Novaya seriya. Fizika* [Proceedings of Saratov State University. New Series. Physics], 2011, vol. 11, no. 1, pp. 20–25.
- 4. Elkin P. M., Erman M. A., Pulin O. V. Analiz kolebatelnykh spektrov metilzameshchennykh uratsila v angarmonicheskom priblizhenii [Analysis of the vibrational spectra of substituted uracil in inharmonic

ПРИКАСПИЙСКИЙ ЖУРНАЛ: управление и высокие технологии № 4 (24) 2013 СИСТЕМНЫЙ АНАЛИЗ, МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

approximation]. Zhurnal prikladnoy spektroskopii [Journal of Applied Spectroscopy], 2006, vol. 73, no. 4, pp. 431–436.

- 5. Elkin P. M., Erman M. A., Kartashov V. M. Matematicheskoe modelirovanie struktury i dinamiki dimerov uratsila i azauratsilov [Mathematical modeling of the structure and dynamics of dimers of uracil and azauracil]. *Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta* [Proceedings of Volgograd State Technical University], 2012, no. 10 (97), pp. 55–62.
- 6. Erman Ye. A., Elkin M. D., Likhter A. M., Dzhalmukhambetova Ye. A., Alykova O. M., Ravcheeva N. A. Strukturno-dinamicheskie modeli i kolebatelnye sostoyaniya dimerov khloruratsila [Structural-dynamic models and vibrational states of clorinuracil dimers]. *Yestestvennye nauki* [Natural Sciences], 2012, № 2 (39), pp. 220–227.
 - 7. Frisch M. J., Trucks G. W., Schlegel H. B. Gaussian. Pittsburgh PA, 2003.
- 8. Tabish R., Ahmad S. Computational stadies of vibrational spectra and molecular properties of 6-methyluracil using HF, DFT and MP2 methods. *Indian J. Phys.*, 2011, vol. 85 (2), pp. 239–260.