PRIKASPIYSKIY ZHURNAL: Upravlenie i Vysokie Tekhnologii (CASPIAN JOURNAL: Management and High Technologies), 2013, 3 (23) SYSTEM ANALYSIS, MATHEMATICAL MODELING

- 6. Elkin M. D., Babkov L. M. Uchet angarmonicheskogo smeshcheniya polos v modelnykh raschetakh kolebatelnykh spektrov dimerov s vodorodnoy svyazyu [Account of anharmonic band shift in model calculations of vibrational spectra of hydrogen-bonded dimers]. *Izvestiya Saratovskogo gosudarstvennogo universiteta. Novaya seriya. Fizika* [News of Saratov State University. New Series. Physics], 2011, vol. 11, no. 1, pp. 20–25.
- 7. Erman Ye. A., Elkin M. D., Likhter A. M., Dzhalmukhambetova Ye. A., Alykova O. M., Ravcheeva N. A. Sistemnyy analiz strukturno-dinamicheskikh modeley biomolekul. Monomery galogenouratsilov [System analysis of structural and dynamic models of biomolecules. Halogenuracil monomers], *Yestestvennye nauki* [Natural Sciences], 2012, no. 2, pp. 213–220.
- 8. Erman Ye. A., Elkin M. D., Ravcheeva N. A., Likhter A. M., Dzhalmukhambetova Ye. A., Alykova O. M. Strukturno-dinamicheskie modeli i kolebatelnye spektry dimerov khloruratsila [Structural and dynamic models and vibrational spectra of clorinuracil dimers]. *Yestestvennye nauki* [Natural Sciences], 2012, no. 2 (39), pp. 220–226.
- 9. Bayrak C. Vibrational spectroscopic study of 6-aminouracil tetracyanonickelate complex. *Hacettepe J. Biol. & Chem.*, 2012, vol. 40, no. 4, pp. 419–426.
- 10. Frisch M. J., Trucks G. W., Schlegel H. B. *Gaussian 03. Revision B.03*. Pittsburgh PA, Gaussian Inc., 2003.
- 11. Sing J. S. Laser Raman and infra-red spectra of biomolecules: 5-aminouracil. *Pramana journal of physics*, 2008, vol. 70, no. 3, pp. 479–486.

УДК 539.193/.194;535/33.34

СИСТЕМНЫЙ АНАЛИЗ РЕЗУЛЬТАТОВ МОДЕЛЬНЫХ РАСЧЕТОВ ПАРАМЕТРОВ АДИАБАТИЧЕСКОГО ПОТЕНЦИАЛА 5X-ЗАМЕЩЕННЫХ УРАЦИЛА В КОНДЕНСИРОВАННОМ СОСТОЯНИИ

Элькин Михаил Давыдович, доктор физико-математических наук, профессор, Астраханский государственный университет, 414056, Российская Федерация, г. Астрахань, ул. Татищева, 20a, тел. 8 (8512) 61-08-84, e-mail: elkinmd@mail.ru

Смирнов Владимир Вячеславович, доктор педагогических наук, кандидат физикоматематических наук, доцент, Астраханский государственный университет, 414056, Российская Федерация, г. Астрахань, ул. Татищева, 20а, тел. 8 (8512) 61-08-84, е-mail: kof@aspДржилмухамбетова Елена Азатуллаевна, кандидат физико-математических наук, доцент, Астраханский государственный университет, 414056, Российская Федерация, г. Астрахань, ул. Татищева, 20а, тел. 8 (8512) 61-08-84, е-mail: kof@aspu.ru

Гречухина Оксана Николаевна, кандидат физико-математических наук, доцент, Астраханский государственный университет, 414056, Российская Федерация, г. Астрахань, ул. Татищева, 20a, тел. 8 (8512) 61-08-84, e-mail: kof@aspu.ru

Алыкова Ольга Михайловна, кандидат педагогических наук, доцент, Астраханский государственный университет, 414056, Российская Федерация, г. Астрахань, ул. Татищева, 20а, тел. 8 (8512) 61-08-84, e-mail: kof@aspu.ru

5X-замещенные урацила (X = F, H, Cl, CH3) являются одной из его таутомерных форм. В работе установлены закономерности смещения полос колебательных спектров указанных соединений, выявлены признаки спектральной идентификации их возможных конформеров в конденсированном состоянии. Рассмотренные модели конформеров отличаются значениями двугранных углов и длин связей. Расчеты оптимизированной структуры и частот колебаний проведены с помощью метода DFT/B3LYP с базисами G-311G(p,d) и G-311+G(p,d). Димеризация приводит к изменению длин валентных связей на величины ~ 0.2 Å, что вызывает смещение полос колебаний валентных связей C=O в длинноволновый диапазон на величину ~ 30 –70 см $^{-1}$. Для идентификации конформеров можно использовать различия в значениях интенсивности полос в диапазоне выше 100 см $^{-1}$. Влияние замести-

теля вызывает смещение полос на величину $\sim 10 \div 30 \text{ см}^{-1}$, что позволяет сделать вывод о локальном влиянии заместителя на силовое поле азациклического кольца.

Ключевые слова: урацил, димер, конформер, таутомер, колебательный спектр, ангармонизм, адиабатический потенциал, 5X-замещенные урацила

SYSTEM ANALYSIS OF MODEL CALCULATIONS OF STRUCTURE AND SPECTRA OF TAUTOMER DIHYDROXY 5X-URACIL

Elkin Mikhail D., D.Sc. (Physics and Mathematics), Professor, Astrakhan State University, 20a Tatishchev St., Astrakhan, 414056, Russian Federation, phone 8 (8512) 61-08-84, e-mail: elkinmd@mail.ru

Smirnov Vladimir V., D.Sc. (Pedagogics), Ph.D. (Physics and Mathematics), Associate Professor, Astrakhan State University, 20a Tatishchev St., Astrakhan, 414056, Russian Federation, phone 8 (8512) 61-08-84, e-mail: kofl@aspu.ru

Dzhalmukhambetova Yelena A., Ph.D. (Physics and Mathematics), Associate Professor, Astrakhan State University, 20a Tatishchev St., Astrakhan, 414056, Russian Federation, phone 8 (8512) 61-08-84, e-mail: kofl@aspu.ru

Grechukhina Oksana N., Ph.D. (Physics and Mathematics), Associate Professor, Astrakhan State University, 20a Tatishchev St., Astrakhan, 414056, Russian Federation, phone 8 (8512) 61-08-84, e-mail: kofl@aspu.ru

Alykova Olga M., Ph.D. (Pedagogics), Associate Professor, Astrakhan State University, 20a Tatishchev St., Astrakhan, 414056, Russian Federation, phone 8 (8512) 61-08-84, e-mail: kofl@aspu.ru

5x-substituted uracil (X = F, H, Cl, CH3) is one of the tautomer form. The work presents regularities of the shift of vibrational spectrum bands of the mentioned compounds, defines its spectrum identification characteristics of their possible conformers in the condensed state. Considered models of conformers that are different by the values of dihedral angles and bond lengths. We used DFT/B3LYP method with bases G-311G(p,d) and G-311+G(p,d) in calculating the optimized structure and vibrational frequencies. The dimerization leads to a change in the lengths of valence bonds by ~ 0.2 Å, that causes displacement of oscillation bands of valence bonds C=O in the long-wavelength range by ~ 30 –70 cm⁻¹. For identification of conformers we can use different in the values of the intensity in the range above 100 cm⁻¹. Influence of the substitute results in the band shift by ~ 30 cm⁻¹, that enables us to make a conclusion about the local influence of the substitute on the force field of the azacyclic ring.

Keywords: uracil, dimer, conformer, tautomer, vibrational spectrum, anharmonic, adiabatic potential, 5X-substituted uracil

Введение. Определение параметров адиабатического потенциала ряда замещенных урацила являлось предметом исследований во многих работах [6, 8–11]. Тема построения структурно-динамических моделей данного класса биомолекул актуальна, так как она связана с изучением нуклеиновых кислот. Однако системный анализ молекулярных параметров, характеризующих общие закономерности в колебательных спектрах замещенных урацила, в работах [6, 8–11] не просматривается.

Поэтому цель данной работы состоит в анализе параметров адиабатического потенциала 5X-замещенных урацила (X= F, Cl, CH_3); в оценке влияния замещенных на UK и KP спектры; в выявлении признаков спектральной идентификации димеров соединений. Расчеты ангармонических констант осуществлялись по соотношениям, предложенным в работе [3].

Модельные расчеты колебательных спектров и их обсуждение. Оптимизация исходной геометрии 5X-замещенных урацила (рис.) осуществлена в предположении плоской исходной структуры мономеров (симметрия C_s).

Рис. Молекулярная диаграмма 5Х-урацилов

Приведенные в табл. 1 данные позволяют судить о влиянии заместителя на геометрию соединения. Значения длин валентных связей СХ согласуются с результатами эксперимента из работы [1]. Отклонение остальных валентных связей и углов $\sim 0,1$ Å и 2° от соответствующих параметров молекулы урацила [4].

Таблица 1

Oir	гимизиј	рованные	значен	ия геом	етрических	парамет	THOR SV-A	рацилов	
Связи (Å)	Х=Н	$X=CH_3$	X=F	X=Cl	Углы (°)	X=H	$X=CH_3$	X=F	X=C1
R(1,2)	1,39	1,39	1,39	1,39	A(2,1,6)	123,7	123,9	123,9	123,9
R(1,6)	1,37	1,38	1,38	1,37	A(2,1,7)	115	115,1	115,3	115,3
R(1,7)	1,01	1,01	1,01	1,01	A(1,2,3)	112,7	112,4	112,6	112,5
R(2,3)	1,38	1,39	1,39	1,39	A(1,2,8)	122,8	123,3	123,2	123,1
R(2,8)	1,21	1,21	1,21	1,21	A(2,3,4)	128,4	128,3	128,9	129,1
R(3,4)	1,41	1,41	1,41	1,41	A(2,3,9)	115,5	115,6	115,3	115,4
R(3,9)	1,01	1,01	1,01	1,01	A(3,4,5)	113,3	114,5	112	112,4
R(4,5)	1,46	1,47	1,46	1,47	A(3,4,10)	120,5	120,5	122,1	121,1
R(4,10)	1,21	1,22	1,21	1,21	A(4,5,6)	120	118,2	121,6	120,5
R(5,6)	1,35	1,35	1,34	1,35	A(4,5,11)	118	117,8	117,1	118,0
R(5,11)	1,08	1,50	1,34	1,74	A(1,6,5)	122	122,8	120,8	121,6
R(6,12)	1,08	1,08	1,08	1,08	A(1,6,12)	115,3	115,0	117,2	116,2

Димеризация приводит к изменению длин валентных связей C=O и NH, участвующих в образовании водородных связей, на величину 0,2 Å. Изменения остальных геометрических параметров по сравнению с мономерами укладываются в указанные выше интервалы отклонений для длин валентных связей и валентных углов урацилового остова.

Длины водородных связей для димеров H7---O8, H9---O10, H9---O8 оценены значениями 1,8, 1,85, 1,89 Å соответственно. Эти димеры принадлежат группе симметрии C_{2h} . Для них имеет место альтернативное правило отбора для интенсивностей в спектрах ИК и КР.

Таблица 2

Интерп	ретация	н фунда	мента	льных	х колеба	аний м	10ном (ера и ди	имеров 5Х-урацилов			
Форма	$v_{_{9 \text{KCH}}}$	M	Мономер			78			89		910	
колебаний	[6]	$\nu_{a_{H\Gamma}}$	ИК	КР	ν_{ahr}	ИК	КР	$ u_{\text{анг}} $	ИК	КР	ИК	КР
					5-фторуј	зацил						
Q, β	1686	1682	35	33	1658	68	61	1664	119	66	85	74
$eta_{ m NH}$	1472	1459	37	7,5	1507	11	91	1459	82	13	72	21
Q, β, γ	1400	1385	49	2,7	1418	157	4,9	1429	8,8	41	28	60
$\beta_{ m NH}$	1367	1367	27	1,7	1366	5,6	7,9	1386	186	5,8	119	5,7
B, Q	1333	1319	18	26	1319	15	92	1310	16	44	60	69
Q_{CF}, Q, γ	1247	1230	263	4,5	1235	509	9,9	1229	502	4,9	522	10
Q, β, β_{NH}	1184	1159	78	2,9	1179	92	3,4	1162	159	3,8	38	17
$Q, \gamma, \beta_{C=O}$	1147	1122	19	2,8	1126	110	10	1127	19	3,4	58	3,5
Q, γ	959	950	16	1,9	966	47	9,0	954	21	3,2	71	16
Γ	806	802	33	4,7	797	226	6,5	800	176	9,0	68	9,9
Q, γ	-	722	11	13	731	21	35	733	59	42	35	39
$\beta_{C=O}$	-	625	2,3	6,0	624	2,4	22	622	12	12	16	10
Γ	532	529	6,9	4,9	538	33	21	525	41	8,4	57	8,0
Γ	451	449	7,3	3,3	456	92	5,6	453	14	7,3	30	7,0
$\beta_{C=O}$	-	389	18	1,5	395	41	3,3	394	76	2,2	76	2,7
ρ	877	885	31	3,0	882	35	6,9	861	18	3,0	21	3,9
$\rho_{C=O}, \chi^*$	754	763	86	2,0	756	92	2,9	742	28	0,7	34	0,6
χ, ρεε	-	379	11	2,0	388	12	2,9	383	9,5	3,9	17	4,7
	1			1	5-хлоруј				T	1		1
Q, β_{NH}, β	1631	1635	68	52	1619	149	92	1622	112	91	158	85
$\beta_{ m NH}$	1460	1448	58	14	1507	42	144	1456	113	28	86	34
$\beta_{ m NH}$	1392	1372	11	3,0	1395	243	4,2	1437	1,5	52	69	47
$Q, Q_{C=O}$	1387	1365	110	1,7	1367	4,8	10	1371	363	2,0	198	3,8
β, Q	1332	1319	144	29	1314	15	85	1308	4,3	35	44	59
β_{NH} , β	1186	1163	117	1,4	1200	220	6,3	1174	180	3,9	140	7,3
Q, γ	1166	1124	7,9	2,9	1135	1,5	5,5	1142	66	3,1	84	5,3
Q_{CCI} , γ	1073	1057	75	0,7	1045	124	2,8	1051	99	0,2	128	1,3
β, Q, β	964	954	17	3,2	966	62	10	958	21	4,4	69	18
γ	762	756	7,2	19	766	88	40	765	36	47	6,7	46
γ	652	649	46	2,9	652	195	5,0	641	243	10	109	7,6
$\beta_{C=O}$, β_{CC1}	600	602	0,3	6,3	604	3,6	26	599	0,4	11	6,6	10
γ	532	531	8,5	4,7	538	59	24	532	28	7,4	63	6,3
β _{C=O}	396	402	16	4,7	416	89	8,4	410	58	9,7	96	6,4
$\beta_{C=O}$	344	359	5,7	2,6	359	6,5	5,4	363	24	5,9	9,1	5,7
ρ	895	896	15	1,3	907	8,8	3,6	890	80	3,3	0,6	2,4
ρ _{C=O} , χ*	758	763	86	0,4	765	119	1,3	746	33	2,5	41	2,0
χ, ρ _{Cl}	384	384	23	0,7	398	19	1,9	387	29	3,2	35	4,1
70 FCI	* -				ин (5-мет					,-		
Q, β	1667	1663	46	35	1644	152	83	1646	58	72	11	50
Q, β_{NH}	1458	1457	88	54	1512	44	127	1459	165	54	157	39
Q, β_{NH}, γ	1387	1381	97	3,3	1412	264	6,1	1432	5,5	37	68	49

PRIKASPIYSKIY ZHURNAL: Upravlenie i Vysokie Tekhnologii (CASPIAN JOURNAL: Management and High Technologies), 2013, 3 (23) SYSTEM ANALYSIS, MATHEMATICAL MODELING

			1				1		1		1	
$\beta_{ m NH}$	1366	1369	20	1,5	1363	8,0	9,0	1384	351	3,0	186	28
β, Q	1357	1345	13	24	1339	6,6	86	1332	2,8	39	50	58
Q_{CC}, Q, γ	1234	1192	29	2,2	1203	249	2,1	1193	6,3	2,9	124	7,4
Q, β, β_{NH}	1170	1168	117	0,5	1198	2,4	4,3	1175	253	0,3	105	5,7
Q, γ	1140	1118	6,0	2,5	1117	31	9,7	1135	1,8	3,2	28	4,3
Q, γ	945	936	11	4,3	954	53	25	949	7,7	8,3	44	21
γ	808	787	4,5	5,3	790	94	8,9	790	49	14	8,1	12
Q, γ	717	720	4,7	13	723	6,2	30	724	45	43	26	37
$\beta_{C=O}$	621	603	1,2	5,3	602	0,4	22	599	7,2	9,0	13	8,3
γ	541	539	7,6	4,1	547	32	20	538	46	7,0	60	6,8
γ	-	460	18	4,5	460	133	8,1	458	43	10	41	9,4
$\beta_{C=O}$	391	389	19	1,2	399	40	2,7	400	91	1,9	92	1,7
ρ	885	897	16	2,0	900	9,5	4,3	885	1,6	4,1	14	1,3
ρ _{C=O} , χ*	764	766	67	2,1	769	97	2,8	750	26	4,1	34	3,2
χ , ρ_{NH} , ρ_{CC}	391	398	19	1,7	406	12	2,2	395	23	3,6	30	4,5

Примечание. Усредненные значения частот колебаний в см $^{-1}$, интенсивности в спектрах КР – в км/моль, в спектрах КР – в $Å^4/a.e.$ м.

Интерпретация фундаментальных колебаний мономеров и димеров 5X-урацилов, основанная на результатах квантовых расчетов параметров адиабатического потенциала в рамках метода DFT/B3LYP/6-311G** [7], представлена в табл. 2, 3. Из рассмотрения исключены полосы низкой интенсивности, как не представляющие интереса для задачи спектральной идентификации соединений.

Весь набор фундаментальных колебаний можно разделить на две группы. Первая группа касается колебаний урацилового остова (табл. 2), вторая — связана с характером поведения полос, интерпретированных как валентные и неплоские деформационные колебания связей NH (табл. 3). При образовании димеров смещение полос указанных колебаний достигает величины $\sim 300~{\rm cm}^{-1}$.

Согласно данным, представленным табл. 3, указанные колебания для каждого типа димера следует считать характеристическими по частоте, форме колебаний и интенсивности. Различие в положении полос, которое достигает величины 100 см⁻¹, можно использовать для спектральной идентификации типа димера. Применить для этих целей результаты модельных расчетов интенсивностей полос представляется затруднительным.

Отметим, что расхождение в положении полос валентных и деформационных колебаниий связей NH для димеров 7---8 и соответствующего димера урацила оценивается величиной 10 см⁻¹. Для димеров 8---9 и 9---10 расхождение составляет порядка 20 см⁻¹. Характер поведения интенсивностей полос сохраняется. Этот факт дает основание утверждать, что влияние заместителя в 5X-урацилах на силовое поле азациклического кольца носит локальный характер.

Сделанный вывод подтверждают результаты расчетов фундаментальных колебаний урацилового остова, приведенные в табл. 2. За исключением полос, интерпретированных как валентные колебания связей СХ, смещение остальных полос оценивается величиной $\sim 30~\text{cm}^{-1}$. Исключение составляют полосы в диапазоне $800-750~\text{cm}^{-1}$, интерпретированные как колебания валентных углов шестичленного цикла (γ), примыкающих к заместителю. Здесь сказывается кинематический эффект, когда увеличение массы заместителя приводит к уменьшению значения частоты колебания.

Таблица 3 Интерпретация валентных и крутильных колебаний связей NH 5X-урацилов

Ин	Интерпретация валентных и крутильных колебаний связей NH 5X-урацилов												
Форма	$\nu_{\scriptscriptstyle 3 \kappa c \pi}$	M	ономер)		78			89			910	
коле- баний	[6, 11]	$\nu_{a{\scriptscriptstyle H}{\scriptscriptstyle \Gamma}}$	ИК	КР	$\nu_{a_{H\Gamma}}$	ИК	КР	$ u_{a_{H\Gamma}} $	ИК	КР	$ u_{ahr} $	ИК	КР
	5-Фторурацил												
q_{NH}	3476	3479	108	93	3422	136	139	3464	214	167	3464	224	245
q_{NH}	3424	3432	70	72	3113	3241	ı	3182	1921	-	3161	2191	-
q_{NH}		1	1	ı	3065	-	869	3152	-	553	3127	-	596
$\rho_{ m NH}$					851	207	-	889	223	-	901	203	-
$\rho_{ m NH}$	660	658	61	2,3	667	78	5,1	-	-	-	-	-	-
$ ho_{ m NH}$	536	536	61	1,0	-	-	-	543	150	1,5	549	150	1,6
	5-Хлорурацил												
q_{NH}	3417	3458	114	109	3421	140	158	3466	224	190	3458	232	267
q_{NH}	-	3438	72	81	3109	3679	-	3189	2096		3155	2326	-
q_{NH}	3108	-	-	-	3064	-	1149	3161	-	733	3122	-	687
$\rho_{ m NH}$		-	-	-	855	199	-	890	138	-	902	199	-
$\rho_{ m NH}$	656	658	62	1,1	668	73	5,3	-	-	-	-	-	-
$\rho_{ m NH}$	545	538	59	0,1	-	-	-	559	154	1,3	568	152	1,4
					5-Мет	илураці	ил (Тим	ин)					
q_{NH}	3485	3478	96	107	3425	117	162	3463	188	190	3462	195	269
q_{NH}		3426	61	87	3124	3365	-	3188	1987	-	3153	2298	-
q_{NH}	3130	1	1	Ī	3080	-	1005	3160	-	665	3119	-	679
$ ho_{ m NH}$		1	1	ı	858	195	-	892	207	-	909	175	-
$\rho_{ m NH}$	662	668	71	2,2	672	82	4,9	-	-	-	-	-	-
$ ho_{NH}$	551	556	58	1,1	-	-	-	558	155	1,6	564	153	1,7

Предлагаемая в табл. 2 интерпретация колебаний позволяет сделать вывод о характеристичности полос 5X-урацилов по частоте, форме колебаний и, отчасти, по интенсивности (в рамках качественной оценки).

Смещение полос (на величину 30–50 см $^{-1}$) при димеризации соединений наблюдается в диапазоне выше 1300 см $^{-1}$, однако использовать этот факт для решения задачи спектральной идентификации затруднительно. Для этой цели следует ориентироваться на отличия в значениях интенсивностей полос димеров различного типа в указанном диапазоне. Отметим и тот факт, что положение соответствующих полос в димерах типа 8---9 и 9---10 различается на величину ~ 20 см $^{-1}$, в связи с чем в табл. 2 для них даны усредненные значения. Для спектральной идентификации указанных димеров можно использовать лишь значения интенсивностей полос в диапазоне выше 100 см $^{-1}$.

Исходя из анализа полученных моделей, димеризация приводит к смещению полос, интерпретированных как валентные колебания связей C=O в длинноволновый диапазон на величину $\sim 30-70~{\rm cm}^{-1}$. Данные полосы имеют высокую интенсивность в ИК спектрах. В спектрах KP их интенсивность может различаться в разы. Учитывая контур указанных полос в реальном эксперименте, использование их в качестве признаков спектральной идентификации димеров может встречать затруднения.

Заключение. Сопоставление экспериментальных данных по колебательным спектрам рассмотренных 5X-урацилов с результатами теоретического анализа фундаментальных колебаний дает основание утверждать следующее. Для данного класса замещенных урацила имеет место характеристичность колебаний по частоте и форме. Исключение составляет

PRIKASPIYSKIY ZHURNAL: Upravlenie i Vysokie Tekhnologii (CASPIAN JOURNAL: Management and High Technologies), 2013, 3 (23) SYSTEM ANALYSIS, MATHEMATICAL MODELING

диапазон 750–800 см⁻¹, а также полосы, интерпретированные нами как валентные и деформационные колебания связей заместителя. Влиянием заместителя на параметры полос, интерпретированных как валентные и деформационные колебания связей NH, можно пренебречь. В качестве признаков спектральной идентификации типа димера можно использовать интенсивности полос. Метод функционала плотности позволяет получать достоверные оценки параметров адиабатического потенциала урацила и его замещенных.

Список литературы

- 1. Пулин В. Ф. Исследование динамики молекулярных соединений различных классов // В. Ф. Пулин, М. Д. Элькин, В. И. Березин. Саратов : Изд-во Саратовского гос. тех. ун-та, 2002. 436 с.
- 2. Элькин М. Д., Математические модели в молекулярном моделировании / М. Д. Элькин, В. Ф. Пулин, А. Б. Осин // Изв. Саратовского гос. тех ун-та. 2010. № 4 (49). С. 36–39.
- 3. Элькин М. Д. Учет ангармонического смещения полос в модельных расчетах колебательных спектров димеров с водородной связью / М. Д. Элькин, Л. М. Бабков // Известия СГУ. Серия «Физика». -2011. -T. 11, № 1. -C. 20–25.
- 4. Элькин П. М. Математическое моделирование структуры и динамики димеров урацила и азаурацилов / П. М. Элькин, М. А. Эрман, В. М. Карташов // Изв. Волг. гос. техн. ун-та. -2012. № 10 (97). С. 55–62.
- 5. Эрман Е. А. Математические модели и компьютерные технологии в молекулярном моделировании / Е. А. Эрман, П. М. Элькин, А. П. Смирнов // Прикаспийский журнал: управление и высокие технологии. − 2010. № 3 (18). С. 126–130.
- 6. Dobrowolski J. Cz. Ar-matrix IR spectra of 5-halogenuracil interpreted by DFT calculation / J. Cz. Dobrowolski, J. E. Rode, R. Kobos, M. Jamroz, K. Bajdor, Mazurik A. R. // J. Phys. Chem. A2005. Vol. 109. P. 2167–2182.
- 7. Frisch M. J. Gaussian 03. Revision B.03 / M. J. Frisch, G. W. Trucks, H. B. Schlegel. Pittsburgh PA: Gaussian Inc., 2003.
- 8. Prasad O. Theretical Raman and IR spectra of tegafur and comparison of molecular electrostatic potential surface, polarizability and hyer polarizability of tegafur with 5-fluoro-uracil by density functional theory / O. Prasad, L. Sinha, N. Kumar // J. At. Mol. Sci. -2010. Vol. 1, No. 3. P. 201-214.
- 9. Rastogi V. K. FT-IR and rRaman spectra, ab initio and density functional computations of the vibrational spectra, molecular geometry, atomic charges and some molecular properties of biomolecule 5-iodouracil / V. K. Rastogi, N. A. Palafox, A. Guerrero-Martinez, G. Tardajos, J. K. Valts, I. Kostova, S. Shlukcer, W. Kiefer // J. Mol. Struct. 2010. Vol. 940. P. 29–44.
- 10. Singh J. S. Rtir and Raman spectra and fundamental frequencies of 5-halosubstituted uracils / J. S. Singh // Spectrochim. Acta. 2012. Vol. 87A, № 2. P. 106–111.
- 11. Zhi-Guo Shang. A study of DFT and surface enhanced Raman scattering in silver colloids for thymine / Zhi-Guo Shang, Dor Ngi Ting, Yee ting Wong, Yee Chen Tan, Bai Ying, Yu-Jun Mo // J. Mol. Structure. 2007. Vol. 826. P. 64–67.

References

- 1. Pulin V. F., Elkin M. D., Berezin V. I. *Issledovanie dinamiki molekulyarnykh soedineniy razlichnykh klassov* [Research of dynamics of molecular compounds of various classes]. Saratov, Saratov State Technical University Publ. House, 2002. 436 p.
- 2. Elkin M. D., Pulin V. F., Osin A. B. Matematicheskie modeli v molekulyarnom modelirovanii [Mathematical models in molecular modeling]. *Izvestiya Saratovskogo gosudarstvennogo tekhnicheskogo universiteta* [News of Saratov State Technical University], 2010, no. 4 (49). pp. 36–39.
- 3. Elkin M. D., Babkov L. M. Uchet angarmonicheskogo smeshcheniya polos v modelnykh raschetakh kolebatelnykh spektrov dimerov s vodorodnoy svyazyu [Account of anharmonic band shift in model calculations of vibrational spectra of hydrogen-bonded dimers]. *Izvestiya Saratovskogo gosudarstvennogo universiteta. Seriya "Fizika"* [News of Saratov State University. Series "Physics"], 2011, vol. 11, issue 1, pp. 20–25.
- 4. Elkin L. M., Erman M. A., Kartashov V. M. Matematicheskoe modelirovanie struktury i dinamiki dimerov uratsila i azauratsilov [Mathematical modeling of the structure and dynamics of uracil and

azauracil dimers]. *Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta* [News of Volgograd State Technical University], 2012, no. 10 (97), pp. 55–62.

- 5. Erman Ye. A., Elkin P. M., Smirnov A. P. Matematicheskie modeli i kompyuternye tekhnologii v molekulyarnom modelirovanii [Mathematical models and computer technologies in molecular modeling]. *Prikaspiyskiy zhurnal: upravlenie i vysokie tekhnologii* [Caspian Journal: Management and High Technologies], 2010, no. 3 (18), pp. 126–130.
- 6. Dobrowolski J. Cz., Rode J. E., Kobos R., Jamroz M., Bajdor K., Mazurik A. R. Ar-matrix IR spectra of 5-halogenuracil interpreted by DFT calculation. *J. Phys. Chem.*, A2005, vol. 109, pp. 2167–2182.
- 7. Frisch M. J., Trucks G. W., Schlegel H. B. Gaussian 03. Revision B.03. Pittsburgh PA, Gaussian Inc., 2003.
- 8. Prasad O., Sinha L., Kumar N. Theretical Raman and IR spectra of tegafur and comparison of molecular electrostatic potential surface, polarizability and hyer polarizability of tegafur with 5-fluoro-uracil by density functional theory. *J. At. Mol. Sci.*, 2010, vol. 1, no. 3, pp. 201–214.
- 9. Rastogi V. K., Palafox N. A., Guerrero-Martinez A., Tardajos G., Valts J. K., Kostova I., Shlukcer S., Kiefer W. FT-IR and rRaman spectra, ab initio and density functional computations of the vibrational spectra, molecular geometry, atomic charges and some molecular properties of biomolecule 5-iodouracil. *J. Mol. Struct.*, 2010, vol. 940, pp. 29–44.
- 10. Singh J. S. Rtir and Raman spectra and fundamental frequencies of 5-halosubstituted uracils. *Spectochim. Acta.*, 2012, vol. 87A, no. 2, pp. 106–111.
- 11. Zhi-Guo Shang, Dor Ngi Ting, Yee ting Wong, Yee Chen Tan, Bai Ying, Yu-Jun Mo. A study of DFT and surface enhanced Raman scattering in silver colloids for thymine. *J. Mol. Structure*, 2007, vol. 826, pp. 64–67.

УДК [004.94+658.5]:616.7

СИСТЕМНЫЙ АНАЛИЗ ПРОБЛЕМАТИКИ УПРАВЛЕНИЯ ПРОЦЕССАМИ РЕАБИЛИТАЦИИ КИСТЕЙ И ПАЛЬЦЕВ РУК

Неживая Юлия Николаевна, магистрант, Астраханский государственный университет, 414056, Российская Федерация, г. Астрахань, ул. Татищева, 20a, e-mail: julia89 astr@mail.ru

Травова Екатерина Сергеевна, студентка, Астраханский государственный университет, 414056, Российская Федерация, г. Астрахань, ул. Татищева, 20а, е-mail: astra_tes**Rodunismuos Андрей Евгеньевич,** магистрант, Астраханский государственный университет, 414056, Российская Федерация, г. Астрахань, ул. Татищева, 20а, е-mail: andreyvod@mail.ru

В статье рассмотрен комплекс вопросов, связанных с управлением процессами реабилитации кистей и пальцев рук (КиПР) после заболеваний, травм, выполнения хирургических операций, проведения протезирования. Авторы анализируют существующие подходы к качественным и количественным оценкам реабилитации КиПР, предлагают собственную систему показателей, обосновывают ее преимущества. Исследованы некоторые вопросы использования инструментальных средств/методов для получения количественных оценок показателей моторики КиПР. Описаны существующие подходы к организации реабилитационных мероприятий в отношении КиПР, включая медикаментозные и физиотерапевтические воздействия, психологическую помощь, различные виды тренинга, сочетания этих подходов. Показано, что усложняющими факторами при управлении процессами реабилитации КиПР являются: вероятностный характер реакций объекта управления на реабилитационные мероприятия; запаздывание реакций по времени; в ряде случаев — неустойчивость во времени достигаемых реабилитационных результатов. Авторами предложены математические модели для оценки: полноты реабилитации КиПР в фиксированные моменты времени; скорости процесса реабилитации; прогнозных значений показателей моторики КиПР к моменту завершения реабилитационных процессов.