References

- 1. Elkin M. D., Dzhalmukhambetova Ye. A., Grechukhina O. N. Proyavlenie mezhmolekulyarnogo vzaimodeystviya v dimerakh uratsila [The manifestation of intermolecular interaction in uracil dimers]. *Izvestiya Saratovskogo gosudarstvennogo universiteta. Seriya Fizika* [News of Saratov State University. Series Physics], 2008, vol. 8, issue 2, pp. 24–30.
- 2. Elkin M. D., Babkov L. M. Uchet angarmonicheskogo smeshcheniya polos v modelnykh raschetakh kolebatelnykh spektrov dimerov s vodorodnoy svyazyu [The accounting of anharmonic band shift in model calculations of vibrational spectra of dimers with hydrogen bond]. *Izvestiya Saratovskogo gosudarstvennogo universiteta. Seriya Fizika* [News of Saratov State University. Series Physics], 2011, vol. 11, issue 1, pp. 20–24.
- 3. Elkin P. M., Erman M. A., Pulin V. F. Analiz kolebatelnykh spektrov metilzameshchennykh uratsila v angarmonicheskom priblizhenii [Analysis of vibrational spectra of methyl-substituted uracils in the anharmonic approximation]. *Zhurnal prikladnoy spektroskopii* [Journal of Applied Spectroscopy], 2006, vol. 73, issue 4, pp. 431–436.
- 4. Elkin P. M., Erman M. A., Kartashov V. M. Matematicheskoe modelirovanie struktury i dinamiki uratsila i azauratsilov [Mathematical modeling of the structure and dynamics of uracil and azauracil]. *Vestnik Volgogradskogo gosudarstvennogo universiteta* [Bulletin of Volgograd State University], 2006, no. 10 (97), pp. 57–63.
- 5. Erman Ye. A., Elkin M. D., Dzhalmukhambetova Ye. A. Modelnye otsenki angarmonicheskogo smeshcheniya polos v kolebatelnykh spektrakh dimerov karbonovykh kislot [Model estimates of anharmonic band shift in vibrational spectra of carboxylic acid dimers]. *Prikaspiyskiy zhurnal: upravlenie i vysokie tekhnologii* [Caspian Journal: Management and High Technologies], 2010, no. 4 (12), pp. 53–58.
- 6. Erman Ye. A., Elkin M. D., Ravcheeva N. A., Likhter A. M., Dzhalmukhambetova Ye. A., Alykova O. M. Sistemnyy analiz strukturno-dinamicheskikh modeley biomolekul. Monomery galoidouratsilov. Dimery khloruratsilov [System analysis of structural and dynamic models of biomolecules. Halogenuracil monomers. Cloruracil dimers]. *Yestestvennye nauki* [Natural Sciences], 2012. no. 2 (39), pp.213–227.
- 7. Colarusso P., Zhang K., Guo B., Bernath P. F. The infrared spectra of uracil, thymine, and adenine in gas phase. *Chemical Physics Letters*, 1997, vol. 269, pp. 29–48.
 - 8. Frisch M. J. et al. Gaussian 03. Revision B.3. Pitttsburgh PA., Gaussian Inc., 2003.
- 9. Ten G. N., Nechev V. V., Sherbakov R. S., Baranov V. I. Calculation and analysis of the structure and vibrational spectra of uracil tautomers. *Journal of Structural Chemistry*, 2010, vol. 51, no. 1, pp. 32–39.

УДК 539.193/.194;535/33.34

МОДЕЛИРОВАНИЕ АДИАБАТИЧЕСКИХ ПОТЕНЦИАЛОВ МОНОГИДРОКСИАЗАУРАЦИЛОВ В КОНДЕНСИРОВАННОМ СОСТОЯНИИ

Элькин Михаил Давыдович, доктор физико-математических наук, профессор, Астраханский государственный университет, 414056, Российская Федерация, г. Астрахань, ул. Татищева, 20a, e-mail: elkinmd@mail.ru

Смирнов Владимир Вячеславович, кандидат физико-математических наук, доцент, Астраханский государственный университет, 414056, Российская Федерация, г. Астрахань, ул. Татищева, 20a, e-mail: kofl@aspu.ru

Джалмухамбетова Елена Азатуллаевна, кандидат физико-математических наук, доцент, Астраханский государственный университет, 414056, Российская Федерация, г. Астрахань, ул. Татищева, 20a, e-mail: kofl@aspu.ru

Гречухина Оксана Николаевна, кандидат физико-математических наук, доцент, Астраханский государственный университет, 414056, Российская Федерация, г. Астрахань, ул. Татищева, 20a, e-mail: kofl@aspu.ru

PRIKASPIYSKIY ZHURNAL: Upravlenie i Vysokie Tekhnologii (CASPIAN JOURNAL: Management and High Technologies), 2013, 2 (22) SYSTEM ANALYSIS, MATHEMATICAL MODELING

Алыкова Ольга Михайловна, кандидат педагогических наук, доцент, Астраханский государственный университет, 414056, Российская Федерация, г. Астрахань, ул. Татищева, 20 a, e-mail: kofl@aspu.ru

Гайсина Альфия Рафаилевна, ассистент, Астраханский государственный университет, 414056, Российская Федерация, г. Астрахань, ул. Татищева, 20a, e-mail: kofl@aspu.ru

Равчеева Наталья Александровна, магистрант, Астраханский государственный университет, 414056, Российская Федерация, г. Астрахань, ул. Татищева, 20a, e-mail: kof@aspu.ru

В работе представлены результаты модельных расчетов колебательных состояний димеров моногидроксиазаурацилов. Их оптимизированные структуры и частоты колебаний определены с помощью метода DFT/B3LYP/6-311G(d,p). Показано, что при гидроксизамещении сохранится качественный характер поведения полос, интерпретированных как колебания циклических фрагментов, валентных и деформационных колебаний связей NH, участвующих в образовании димеров. Оптимизация геометрических параметров молекул осуществлялась в предположении плоской структуры соединений. Расхождение в значениях длин связей для различных конформеров и соответствующих им мономеров не превышает величины 0,01 Å, для валентных углов $\sim 1^{\circ}$. Для димеров, образованных связью C=O---HN, механизмом межмолекулярного взаимодействия является сильная водородная связь 1,6–1,8 Å, а для димеров со связью C=O---HC – слабая водородная связь с длиной порядка 2,2 Å. Для спектральной идентификации ряда димеров возможно использовать полосы в ИК спектре в диапазоне 890–950 см $^{-1}$, отнесенные к неплоским деформационным колебаниям связей NH, а также крутильные колебания гидроксильных групп в диапазоне ниже 600 см $^{-1}$.

Ключевые слова: моногидроксиазаурацил, азаурацил, димер, конформер, колебательный спектр, ангармонизм, адиабатический потенциал

MODELING OF THE ADIABATIC POTENTIALS OF MONOHYDROXY AZAURACIL IN THE CONDENSED STATE

Elkin Mikhail D., D.Sc. (Physics and Mathematics), Professor, Astrakhan State University, 20a Tatishchev St., Astrakhan, 414056, Russian Federation, e-mail: elkinmd@mail.ru

Smirnov Vladimir V., Ph.D. (Physics and Mathematics), Associate Professor, Astrakhan State University, 20a Tatishchev St., Astrakhan, 414056, Russian Federation, e-mail: kofl@aspu.ru

Dzhalmukhambetova Yelena A., Ph.D. (Physics and Mathematics), Associate Professor, Astrakhan State University, 20a Tatishchev St., Astrakhan, 414056, Russian Federation, e-mail: kof1@aspu.ru

Grechukhina Oksana N., Ph.D. (Physics and Mathematics), Associate Professor, Astrakhan State University, 20a Tatishchev st., Astrakhan, 414056, Russian Federation, e-mail: kofl@aspu.ru

Alykova Olga M., Ph.D. (Pedagogics), Associate Professor, Astrakhan State University, 20a Tatishchev St., Astrakhan, 414056, Russian Federation, e-mail: kof1@aspu.ru

Gaysina Alfiya R., Assistant, Astrakhan State University, 20a Tatishchev St., Astrakhan, 414056, Russian Federation, e-mail: kofl@aspu.ru

Ravcheeva Natalya A., undergraduate student, Astrakhan State University, 20a Tatishchev St., Astrakhan, 414056, Russian Federation, e-mail: kofl@aspu.ru

The results of model calculations of the vibrational states of dimers monohydroxy azauracil. Their optimized structures and frequencies of vibration are determined at the DFT/B3LYP/6-311G (d, p). It is shown that the hydroxy substitution does not change qualitative behavior of the bands, interpreted as the vibrations of cyclical fragments, stretching and deformation vibrations of NH, involved in the formation of dimers. Optimization of molecules geometrical parameters was carried out assuming a flat structure of the compounds. The discrepancy in the values of the bond lengths for the different conformers and monomers does not exceed 0.01 Å, for the bond angles of \sim 1 °. For the dimers formed bond C = O --- HN mechanism of intermolecular interaction is a strong hydrogen bond 1.6-1.8 Å, and the dimer with bond C = O --- HC, weak hydrogen bond with a length of about 2.2 Å. For the spectral identification of some dimers may use the

bands in the IR spectrum in the range of 890–950 cm⁻¹, assigned to non-planar deformation vibrations of NH, and the torsional vibrations of the hydroxyl groups in the range below 600 cm⁻¹.

Keywords: monohydroxy azauracil, azauracil, dimer, conformer, vibrational spectra, anharmonicity, adiabatic potential

Введение. В конденсированном состоянии соединения урацилового ряда, в том числе моногидроксиазаурацилы (рис.), представляют собой поликристаллы, при этом их молекулы образуют димеры с водородными связями. Теоретическая интерпретация колебательных спектров димеров урацила и азаурацилов предлагалась в периодической литературе неоднократно. В работах [2, 4-6] модельные оценки параметров адиабатического потенциала в рамках метода функционала плотности (DFT/B3LYP) [8] осуществлены в ангармоническом приближении теории молекулярных колебаний. Если в димеризации участвуют связи NH (C=O---HN), то механизмом является сильная водородная связь ($R_{O--H} \sim 1.6-1.8 \text{ Å}$), если связь CH (C=O---HC), то длина водородной связи оценивается величиной ~ 2.2 Å. В случае сильной водородной связи полосы, интерпретированные как валентные колебания связей NH и участвующие в образовании димера, смещаются в длинноволновый диапазон колебательного спектра на величину ~ 400 см⁻¹. Полосы, интерпретированные как неплоские деформационные колебания указанных связей, смещаются на величину ~ 300 см⁻¹ в коротковолновый диапазон колебательного спектра. По сравнению с колебательными спектрами мономеров смещение полос (~50-80 см⁻¹) имеет место для валентных колебаний связей C=O и деформационных колебаний валентных углов СNH, участвующих в образовании димера.

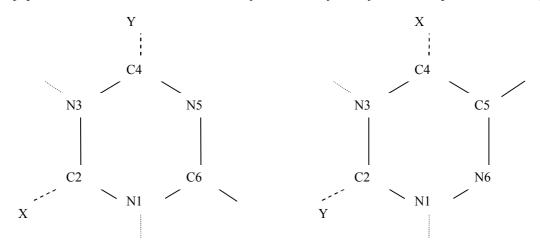


Рис. Молекулярные диаграммы 2- и 4-гидроксиазаурацилов (X = OH, Y = O)

Можно предположить, что в спектрах моногидроксиазаурацилов сохранится качественный характер поведения полос, интерпретированных как колебания циклических фрагментов, валентных и деформационных колебаний связей NH, участвующих в образовании димеров. Однако присутствие в молекуле гидроксильных фрагментов и их расположение относительно связей NH (т.е. наличие различных конформеров) требует теоретического подтверждения высказанных предположений. В этом и состоит цель данной работы.

Здесь мы ограничились димерами с одинаковой структурой мономеров (симметрии C_{2h} и C_{s}). Для димеров симметрии C_{2h} имеет место альтернативное правило отбора для интенсивностей полос в ИК и КР спектрах. Понижение симметрии связано с взаимным расположением гидроксильных фрагментов, что может сказаться на значениях интенсивностей полос.

Результаты модельных квантовых расчетов и их интерпретация. Оптимизация геометрической структуры димеров моногидроксиазаурацилов осуществлялась в предположении плоской структуры соединений. Результаты для циклических фрагментов приведены в табл. 1. Расхождение в значениях длин связей для различных конформеров 2-гидроксиазаурацила (K1 = D1(1,2,O,H) = 0° и (K2 = D2(1,2,O,H) = 180°) и 4-гидроксиазаурацила (K1 = D1(3,4,O,H) = 0° и (K2 = D2(3,4,O,H) = 180°) не превышает величины 0,01 Å, для валентных углов расхождения оцениваются величиной $\sim 1^{\circ}$. Отличия от соответствующих геометрических параметров молекул мономеров являются величинами того же порядка.

Значения валентных углов A(OCH) оцениваются величиной $\sim 106^{\circ}$ в конформерах, где расстояние между атомами водорода гидроксильного фрагмента и соседней связи минимально ($\sim 2,2$ Å). В иных случаях достигаются значения $\sim 110^{\circ}$. Оценки длин валентных связей $R_{C=O}(\sim 1,21$ Å) и $R_{CO}(\sim 1,32$ Å) согласуются с экспериментальными данными.

Таблица 1 Оптимизированные значения геометрических параметров гидроксиазаурацилов

2-ОН-5-АУ 2-ОН-6-АУ 4-ОН-5-АУ 4-ОН-6-АУ Связи, углы N1H N3H N1H N3H N1H N3H N1H N₃H 1,38 1,3 1,37 1,3 1,44 1,38 1,42 1,40 R(1,2)R(1.6)1,39 1,37 1,36 1,37 1,35 1,30 1,33 1,29 R(2,3)1,27 1,34 1,28 1,37 1,39 1,43 1,36 1,44 R(3,4)1,41 1,44 1,4 1,41 1,31 1,35 1,29 1,35 1,44 1,39 1,49 R(4,5)1,47 1,37 1,30 1,44 1,38 R(5,6)1,27 1,3 1,29 1,29 1,30 1,37 1,30 1,36 A(2,1,6)117 114 123 118 122 118 127 121 123 123 125 114 114 115 A(1,2,3)124 114 A(2,3,4)120 122 118 121 119 122 119 123 A(3,4,5)119 114 115 111 129 122 124 117 A(4,5,6)118 118 125 125 113 114 120 121 A(1,6,5)124 129 115 120 124 129 116 124

Примечание. 2-OH-5-AУ — 2-гидрокси-5-азаурацил, 2-OH-6-AУ — 2-гидрокси-6-азаурацил, 4-OH-5-AУ — 4-гидрокси-5-азаурацил, 4-OH-6-AУ — 4-гидрокси-6-азаурацил.

Для оценки энергии колебательного перехода и ангармонических констант на основе теории возмущения использованы соотношения из работы [3]. Они включают в себя частоты гармонических колебаний, безразмерные нормальные колебательные координаты, кубические и квартичные силовые постоянные, полученные с помощью квантово-механических расчетов в программном комплексе Gaussian [8].

Результаты теоретической интерпретации колебательных спектров димеров моногидроксиазаурацилов (конформеры К1 и К2 таутомеров N1H и N3H) представлены в табл. 2–6. Частоты фундаментальных колебаний приведены в см $^{-1}$, интенсивности в спектрах ИК в 10^3 м/моль, в спектрах КР в ${\rm \AA}^4$ /а.е.м.

Таблица 2

Инте	рпретя	ция кол	гебани	ій связа	ей ОН в	ı NH –	в конч	honmei	nax r	лимепя		улица 4 У
	ν _{анг}	ИК	КР	v_{ahr}	ИК	КР	$v_{\rm ahr}$	ИК	КР	v_{ahr}	ИК	КР
Форма		N1H K1		· ani			N1H K2					
		_	2		си-6-аза	N1H_ урацил		·CH)			<u> </u>	
q _{OH}	3629	166	318	3629	83	158	3578	107	128	3578	215	256
q _{NH}	3445	156	250	3458	125	126	3455	78	123	3458	250	248
ρ_{NH}	500	354	0	572	93	0,6	499	163	0,9	573	184	0
χон	186	69	5,3	516	165	3,9	184	34	2,6	516	306	7,8
70000	l.	ı	4-ги,	дрокси-5	-азаураі	цилура	цил (C=0	ONH		I.	I.	
q_{OH}	3578	205	203	3592	120	126	3579	101	100	3591	241	252
q_{NH}	3001	3606	0	2987	3748	0,1	-	_	-	2978	3846	0
q_{NH}	2944	0	731	-	-	-	2928	0	729	2917	1,2	729
$\rho_{ m NH}$	944	110	0	947	105	0	914	0,1	1,7	948	102	0
χон	615	188	7,5	614	94	3,7	575	96	3,3	576	194	6,6
			4-ги,	дрокси-6	б-азаураг	цилура	цил (С=0	ONH	(1)			
q _{OH}	3554	175	283	3627	94	127	3554	87	141	3628	191	257
q_{NH}	3115	2996	0	3105	3070	4,3	-	-	-	3094	3156	0
q_{NH}	3073	0.3	860	-	-	ı	3059	7,8	788	3048	0	882
ρ_{NH}	935	122	0	940	123	0	911	0,2	1,4	946	125	0
χон	597	128	9,4	597	115	4,7	412	111	3,3	412	223	6,7
	1	N3H_K1				N3H_	K1,2]	N3H_K2	
			2	2-гидрок	си-5-аза	урацил	(C=O	NH)				
q_{OH}	3580	268	258	3578	302	204	ı	-	-	3560	373	146
q_{NH}	3002	3196	0	2951	3194	36	-	-	-	2884	3505	0
q_{NH}	2947	0	601	-	-	-	2875	204	546	2806	0	530
$ ho_{ m NH}$	951	127	0	959	111	0,1	892	36	0,2	945	162	0
χон	551	216	7,4	554	110	3,6	476	100	1,1	501	201	2,6
					си-6-аза							
q_{OH}	3572	274	270	3601	140	79	3571	146	133	3590	325	151
q_{NH}	3023	2831	0	2965	2960	28	-	-	-	2915	3202	0
q_{NH}	2968	0	636	-	-	-	2893	123	605	2838	0	603
ρ_{NH}	942	122	0	955	102	0	898	39	0	937	156	0
χон	538	238	8,1	539	120	3,9	353	93	1,6	376	176	2,9
		1			-азаураі		цил (C=0	OHN)		r	1
q_{OH}	3560	372	145	3577	302	203	-	-	-	3577	267	258
q_{NH}	2883	3512	0	2942	3225	37	-	-	-	2942	3149	0,0
q_{NH}	2804	0	530	-	-	-	2865	213	544	2865	0	601
ρ_{NH}	945	162	0	962	111	0,2	895	35	0,2	950	127	0
χон	512	201	2,6	553	110	3,6	477	100	1,1	551	216	7,4
		T			5-азаура <u>і</u>					T	T	ı
q_{OH}	3537	372	187	3623	139	124	3555	155	108	3625	259	256
q_{NH}	2718	4417	0	2821	3920	34	-	-	-	2907	3794	0
q_{NH}	2654	0	521	-	-	-	2721	237	582	2874	1,9	665
ρ_{NH}	993	153	0	1001	1120	0,2	934	34	0,4	981	136	0
χ_{OH}	485	218	4,1	453	107	2,4	416	117	2,7	411	238	5,5

PRIKASPIYSKIY ZHURNAL: Upravlenie i Vysokie Tekhnologii (CASPIAN JOURNAL: Management and High Technologies), 2013, 2 (22) SYSTEM ANALYSIS, MATHEMATICAL MODELING

Как следует из табл. 2, полосы, интерпретированные как валентные колебания связей ОН (q_{OH}) , располагаются в диапазоне $3560-3630~\text{cm}^{-1}$, что характерно и для мономеров. Данные полосы интенсивны в ИК и КР спектрах и отделены от остальных полос щелью $\sim 200~\text{cm}^{-1}$. Их использование в задаче идентификации таутомеров и конформеров гидроксиазаурацилов не целесообразно. Отметим, что параметры полос, отнесенных к валентным колебаниям гидроксильных групп, согласуются с соответствующими параметрами гидроксзамещенных бензола [7].

Для N1H таутомера 2-гидрокси-6-азаурацила при образовании димера со слабой водородной связью ($R_{O\cdots H}\sim 2.2~\text{Å}$) параметры полос, отнесенных к валентным колебаниям связей NH (q_{NH}), совпадают с таковыми для мономеров. В остальных димерах (табл. 2) имеет место дублетное расщепление указанных полос ($\sim 50–80~\text{cm}^{-1}$) и их существенное смещение в длинноволновый диапазон на величину $\sim 300–450~\text{cm}^{-1}$. Использование приведенных частотных характеристик полос в задачах спектральной идентификации димеров гидроксиазаурацилов затруднено, поскольку в реальном эксперименте контуры полос имеют значительное уширение.

Интерпретация колебаний димеров моногидроксиурацилов

Таблица 3

интерпретации колсоании димеров моногидроксиурацилов													
Фотка		2-0	ЭH-5-а	заураци	л (N3	HOC4	4-OH-5-азаурацил (N3HOC2)						
Форма колебаний	ν_{ahr}	К1		К1,2		К2	К2		К1		,2	К2	
колсоании		ИК	КР	ИК	КР	ИК	КР	ИК	КР	ИК	КР	ИК	КР
$q_{C=O}, \gamma$	1694	1918	42	1974	31	1750	12	1751	12	1985	30	1917	42
Q, γ, β	1624	476	10	478	3,6	804	7,5	803	7,5	474	3,5	476	10
q_{CO} , β_{NH}	1573	1106	26	783	41	374	51	374	51	774	41	1106	25
Q, β, β_{OH}	1460	392	30	336	37	298	40	298	40	339	37	393	30
$\beta_{ m NH}$	1385	109	4,1	509	13	932	4,5	932	4,5	513	13	107	4,0
β	1360	216	79	137	48	36	33	36	33	135	48	217	79
β_{NH} , β_{OH}	1307	82	4,3	133	4,1	186	4,9	186	4,9	134	4,1	81	4,4
$\beta_{ m NH}$	1197	-	-	90	2,3	198	4,7	199	4,7	91	2,3	-	-
β_{OH} , β_{NH}	1169	368	0,9	186	1,0	-	-	-	-	186	1,0	368	0,9
Q, $\beta_{C=O}$	1110	9,4	7,5	12	7,5	10	6,7	10	6,6	12	7,4	10	7,4
Q, y	1028	165	20	93	13	28	7,8	28	7,8	95	13	165	20
γ, Q	946	141	7,2	163	14	184	20	184	21	165	14	140	7,1
γ, Q	826	16	49	27	48	35	46	35	46	27	48	17	49
γ	605	45	8,8	59	8,1	73	7,7	73	0,0	57	0,2	45	0,0
βco	577	8,9	13	7,1	12	7,2	11	7,2	18	11	20	8,8	22
βс=0	538	13	2,5	7,8	4,5	0,4	6,5	0,4	6,5	7,8	4,5	13	2,5
β_{CO}	388	46	2,1	49	3,1	62	3,9	62	3,9	49	3,1	45	2,1

Для спектральной идентификации ряда димеров возможно использовать интенсивность полос в ИК спектрах в диапазоне 890–950 см $^{\text{-1}}$, отнесенных к неплоским деформационным колебаниям связей NH (ρ_{NH}).

Наиболее надежным признаком спектральной идентификации таутомеров и конформеров димеров гидроксиазаурацилов следует считать характеристики полос, интерпретированных как крутильные колебания гидроксильных групп (χ_{OH}). В диапазоне ниже 600 см⁻¹ интенсивность этих полос на порядок выше интенсивностей остальных полос.

Таблица 4

Частоты неплоских колебаний димеров гидроксиазаурацилов

2-01	Н-5-АУ	(N3HC	OC4)	4-OI	Н-5-АУ	(N3H(OC4)	4-OH-5-АУ (N1HОС2)				
$\nu_{a_{H\Gamma}}$	K1	K1,2	K2	$\nu_{a_{H\Gamma}}$	K1	K1,2	K2	$\nu_{a_{H\Gamma}}$	K1	K1,2	K2	
800	87	72	57	801	58	72	87	990*	18	23	27	
739	12	9,8	5,7	739	5,7	9,7	12	801	99	101	102	
440	21	9,0	0,7	440	0,8	9,0	21	443	20	14	7.6	
2-01	Н-6-АУ	(N3HC	OC4)	4-OI	Н-6-АУ	(N3H(OC4)	4-OH-6-AУ (N1HОС2)				
877*	50	45	43	814	43	0,0	21	841*	56	28	-	
758	20	14	8,9	774	17	0,1	58	810*	-	35	72	
701	31	24	15	467	2,8	11	11	767	39	33	27	

Примечание. * неплоские деформационные колебания связей СН (ρ_{CH}). Колебания с частотой ниже 500 см⁻¹ интерпретированы как крутильные колебания связей шестичленного цикла (χ). Колебания с частотами в диапазоне 810–700 см⁻¹ отнесены к колебаниям связей С=О ($\rho_{C=O}$) и СО (ρ_{CO}).

Результаты модельных расчетов спектра фундаментальных колебаний исследуемых димеров в диапазоне ниже 1800 см⁻¹ представлены в табл. 3–6. Полученные данные согласуются с экспериментом, представленным в работах [1, 3, 7, 11]. Этот факт позволяет констатировать, что влияние димеризации на положение полос циклических фрагментов носит локальный характер.

Таблица 5 Частоты фундаментальных колебаний димеров моногидроксиурацилов

	K1	ты ф.	K1,		К2			K1		K1		К	2		
$\nu_{a_{H\Gamma}}$	ИК	КР	ИК	КР	ИК	КР	ν_{ahr}	ИК	КР	ИК	КР	ИК	КР		
2-	гидрокс	и-6-аз	аурацил	(N3H	OC4)	•	4-гидрокси-6-азаурацил (N3HOC2)								
1685	1412	40	1447	29	1323	16	1680	1490	5,3	1941	17	1858	32		
1607	ı	-	167	3,3	379	14	1615	530	0,1	137	0,5	-	-		
1575	386	2,1	305	2,4	-	-	1577	ı	-	300	160	121	32		
1542	576	55	131	59	32	61	1557	46	104	17	81	666	48		
1453	84	73	59	90	33	94	1422	507	8,8	211	12	22	11		
1359	183	62	566	31	877	4,1	1351	132	5,6	332	14	496	28		
1331	32	7,2	16	7,3	49	9,1	1306	111	16	141	20	149	25		
1240	227	49	140	48	57	40	1215	380	5,5	158	2,8	-	ı		
1178	166	48	221	58	294	67	1192	ı	ı	195	8,3	302	15		
-	-	-	-	-	-	-	1141	166	17	86	21	2	24		
1094	67	28	38	26	2,3	24	1055	29	10	93	11	158	11		
1003	153	4,8	78	1,9	13	0,8	1037	186	33	83	51	17	62		
971	38	4,2	79	7,2	107	9,8	944	152	10	111	3,9	70	3,0		
744	24	32	31	31	37	31	761	8	62	13	61	16	60		
576	19	12	23	12	22	11	588	184	11	152	11	124	12		
554	69	7,3	48	6,4	10	5,7	555	0,9	3,3	11	3,6	20	4,7		
520	63	5,5	77	7,3	102	8,4	532	8,0	11	11	11	11	4,7		
376	45	2,0	49	3,1	68	4,2	373	83	0,0	70	2,7	67	1,3		
4-	гидрокс	и-5-аз	аурацил	(N1H	OC2)			4-гидрок	си-6-а	заураци.	л (N1H	OC2)			
1702	1793	44	1823	48	1847	53	1704	1642	41	1671	45	1701	48		
1636	-	-	394	1,9	891	3,2	-	-	-	-	-	-	-		
1613	1001	7,1	551	3,3	-	-	1606	789	6,2	682	6,0	569	5,7		
1555	430	17	372	16	321	14	1553	75	22	65	28	58	33		
1472	156	59	143	71	91	81	1462	379	54	395	77	422	107		

PRIKASPIYSKIY ZHURNAL: Upravlenie i Vysokie Tekhnologii (CASPIAN JOURNAL: Management and High Technologies), 2013, 2 (22) SYSTEM ANALYSIS, MATHEMATICAL MODELING

1.4.4.1	1002	17	205	((I			l		l	l	1
1441	1083	16	385	6,6	-	-	-	-	-	-	-	-	
1408	Ī	-	1021	6,1	1740	11	1407	178	104	232	76	271	40
1336	40	24	66	26	124	29	1319	6,4	7,1	411	12	832	17
1255	380	17	247	21	73	25	ı	ı	-	ı	-	-	ı
1206	69	2,1	93	2,1	121	1,9	1214	528	18	289	34	25	49
1178	331	16	259	11	213	6,8	1180	283	58	248	37	233	15
-	-	-	-	-	-	-	1136	36	5,3	54	5,2	69	5,1
-	-	-	-	-	-	-	1002	26	6,8	41	8,7	49	11
961	125	28	141	27	154	25	964	199	21	121	26	44	30
796	4,8	37	2,3	39	0.1	42	746	3,8	32	4,0	34	4,1	35
588	34	22	86	21	143	20	590	65	10	101	9,3	138	9,3
560	0	-	42	11	10	12	557	4,6	10	16	8,3	27	6,2
-	-	-	-	-	-	-	525	23	10	15	12	4,7	15
406	87	2,6	42	1,7	0,7	0,7	378	85	2,6	42	1,8	1,3	1,0

Отметим общие закономерности в характере поведения полос указанного спектрального диапазона, интерпретированных как колебания азаурациловых фрагментов.

Полосу, отнесенную к колебаниям связи С=О, следует считать характеристичной по

форме, частоте и интенсивностям. По сравнению с мономером имеет место смещение в длинноволновый диапазон на величину порядка 50 см⁻¹.

Как правило, дублетное расщепление полос мономеров не превышает величины 15 см⁻¹, что позволяет представлять результаты в виде одной полосы усредненной частоты и суммарной интенсивности (для димеров симметрии C_s) в спектрах ИК и КР. Появление пробелов в таблицах связано с нарушением указанного правила. Соответствующие полосы можно использовать для спектральной идентификации таутомеров и конформеров (энергетическая щель $\sim 30-50$ см⁻¹).

Таблица 6 Интерпретация колебательных спектров мономера и димера 2-гидрокси-5-азаурацила (таутомер N1H)

Форма	N/	N1H_K1			N1H_K2			V	K1		K1	,2	K	2
Форма	$v_{_{9 \text{KC}\Pi}}$	$\nu_{a_{H\Gamma}}$	ИК	КР	$\nu_{a_{H\Gamma}}$	ИК	КР	v_{ahr}	ИК	КР	ИК	КР	ИК	КР
$Q_{C=O}, \gamma$	1749	1720	237	34	1720	251	38	1701	587	89	610	93	633	96
Q, γ, β	1613	1619	391	16	1614	293	12	1612	710	51	616	42	513	33
Q, β_{NH}	1570	1600	142	4,1	1583	338	3,6	1586	527	10	727	14	931	18
Q, β_{NH}	1500	ı	-	-	1491	198	8,1	1497	-	-	216	8,2	453	16
Q, β_{NH}	1454	1441	232	3,9	-	-	-	1446	418	5,6	267	2,7	-	-
q_{CO}, β_{NH}	1375	1329	408	1,1	1339	17	2,5	1338	617	7,4	357	5,3	58	4,3
β , Q, γ	1338	1295	15	2,1	1301	7,3	2,7	1321	391	25	168	30	9,0	34
Q, β, γ	1247	1224	1.0	3,2	1225	35	3,0	1239	4,1	15	6,0	17	7,9	18
β_{OH}	1177	1180	31	9,7	1191	269	3,1	1191	60	32	414	18	744	5,1
Q, γ	1101	1056	19	0,7	1066	20	1,2	1054	92	6,2	67	6,3	38	6,5
Q, γ	975	1006	23	5,9	1019	6,4	6,8	1019	68	14	38	18	8,5	21
γ, Q	937	945	5,4	1,7	940	32	1,9	950	8,1	3,5	47	3,1	85	2,9
γ, Q	757	722	18	17	727	23	15	727	40	39	47	36	54	34
γ , $\beta_{C=O}$	576	580	32	2,6	575	10	3,0	579	129	5,2	93	5,9	57	6,7
γ , β_{CO}	533	535	0,6	6,9	537	1,3	6,2	541	1,4	22	1,9	21	2,2	21
$\beta_{C=O}$, β_{CO}	513	507	3,8	2,0	501	4,5	1,9	510	5,7	4,7	12	4,3	17	3,8
$\beta_{C=O}$, β_{CO}	402	374	3,1	0,6	361	15	1,5	371	3,2	1,2	24	2,2	44	3,0
ρ	877	908	16	1,4	904	14	1,3	963	24	2,3	23	2,3	21	2,3
χ	410	380	42	1,3	411	2,3	0,3	404	56	2,8	29	1,8	1,7	0,9

Характеристичными по частоте и форме колебаний можно считать полосы, интерпретированные как деформационные колебания свзей СО (β_{CO}) С=О (β_{CO}), проявляющиеся в диапазоне 600–500 см⁻¹. В этот же диапазон попадают и деформационные колебания валентных углов (γ) шестичленного цикла. Имеет место смешивание форм нормальных колебаний. Значения ИК интенсивностей для разных таутомерных форм и их конформеров могут различаться на порядок, что позволяет использовать эти полосы в задачах их спектральной идентификации.

Деформационные колебания валентных углов СОН (β_{OH}) являются характеристическими по частоте и форме, а существенно различающиеся по величине интенсивности полос в ИК спектрах различных таутомеров и конформеров можно использовать для их спектральной идентификации.

Имеющее место смещение полос в диапазоне 1600-1200 см $^{-1}$, интерпретированных как скелетные колебания связей кольца (Q) и деформационные колебания углов, образованных валентными связями NH (β_{NH}) и CH (β_{CH}), затруднительно использовать в задачах спектральной идентификации. Для этого имеет смысл воспользоваться различием (более чем на порядок) в значениях ИК интенсивностях ряда полос.

Следует обратить внимание на полосу в диапазоне $\sim 370-400$ см $^{-1}$, отнесенную к деформационному колебанию связи СО (β_{CO}). Согласно модельным расчетам, в ряде таутомеров интенсивность указанной полосы в спектрах ИК можно привлекать в качестве признака их спектральной идентификации.

Заключение. Представленные результаты модельных расчетов конформеров N1H и N3H таутомеров моногидроксиазаурацилов подтверждают известный факт, что механизмом образования димеров в соединениях урацилового ряда является водородная связь. В образовании сильной водородной связи участвуют атомы водорода связей NH. Валентные колебания этих связей располагаются в диапазоне 2900–3100 см⁻¹ в зависимости от типа таутомера. Неплоские деформационные колебания располагаются в диапазоне 890–950 см⁻¹. В спектре КР их интенсивность крайне мала. Нарушением правила альтернативного запрета на интенсивности в димерах симметрии C_s можно пренебречь. Характер поведения полос, отнесенных к валентным колебаниям гидроксильного фрагмента, не претерпевает существенных изменений в ряду ротамеров исследуемых таутомерных форм. Параметры полос, интерпретированных как крутильные колебания связей ОН, можно использовать в качестве признаков спектральной идентификации соединений.

Список литературы

- 1. Пулин В. Ф. Моделирование адиабатических потенциалов гидроксизамещенных бензола / В. Ф. Пулин, П. М. Элькин, М. А. Эрман // Вестник Саратовского государственного технического университета. 2011. № 3 (57). С. 91–95.
- 2. Элькин М. Д. Проявление межмолекулярного взаимодействия в димерах урацила / М. Д. Элькин, Е.А. Джалмухамбетова, О. Н. Гречухина // Известия СГУ. Сер. Физика. 2008. T. 8, вып. 2. C. 24-30.
- 3. Элькин М. Д. Учет ангармонического смещения полос в модельных расчетах колебательных спектров димеров с водородной связью / М. Д. Элькин, Л. М. Бабков // Известия СГУ. Сер. Физика. -2011. -T. 11, № 1. -C. 20–25.
- 4. Элькин П. М. Математическое моделирование и динамика димеров урацила и азаурацилов / П. М. Элькин, М. А. Эрман // Известия Волгоградского государственного технического университета. -2012. -№ 10 (44). C. 55–62.
- 5. Элькин П. М. Моделирование колебательных состояний 5- и 6-азаурацилов / П. М. Элькин, А. М. Лихтер, О. Н. Гречухина // Прикаспийский журнал: управление и высокие технологии. $2009. \mathbb{N} \ 1 \ (5). \mathrm{C}. 48-52.$
- 6. Эрман Е. А. Системный анализ структурно-динамических моделей димеров урацила и азаурацилов в конденсированном состоянии / Е. А. Эрман, Г. П. Стефанова, Н. А. Равчеева,

PRIKASPIYSKIY ZHURNAL: Upravlenie i Vysokie Tekhnologii (CASPIAN JOURNAL: Management and High Technologies), 2013, 2 (22) SYSTEM ANALYSIS, MATHEMATICAL MODELING

- Е. А. Джалмухамбетова, О. Н. Гречухина, О. М. Алыкова // Прикаспийский журнал: управление и высокие технологии. -2012. -№ 3 (19). C. 95–102.
- 7. Fulara J. Theoretical and matrix-isolation experimental study of the infrared spectra of 5-azauracil and 6-azauracil / J. Fulara, M. J. Nowak, L. Lapinski // Spectrochimica Acta. − 1991. − Vol. 47A, № 5. − P. 595–613.
 - 8. Gaussian 03. Revision B.3. / M. J.Frisch et al. Pitttsburgh PA.: Gaussian Inc., 2003.
- 9. Kumar H. FTIR and FT-Raman spectra of complex Cu(II) with 6-azauracil / H. Kumar, M. Sharm, R. Sharm, B. K. Rai, H. Joe, M. Srivastava, V. K. Rastogi // AIP Conference Proceeding 1267. 2010. P. 672–673.
- 10. Mitran R. A. Some unusual spectral properties of 6-azauracil derivatives / R. A. Mitran, A. C. Bascornea // U.P.B. Sci. Bull. Ser. B. 2011. Vol. 73, № 1. P. 67–74.
- 11. Potter B. S. Aza analog of nucleic acid bases: Infrared spectra of 5-azauracil and crystal structure of 5-azauracil monohydrate / B. S. Potter, R. A. Palmer, R. Withnall, B. Z. Chowdhry // New Journal of Chemistry. $-1999.-Vol.\ 23,\ No.\ 1.-P.\ 117-122.$

References

- 1. Pulin V. F., Elkin P. M., Erman M. A. Modelirovanie adiabaticheskikh potentsialov gidroksizameshchennykh benzola [Modeling of adiabatic potentials of hydroxyl-substituted benzene]. *Vestnik Saratovskogo gosudarstvennogo tehnicheskogo universiteta* [Bulletin of Saratov State Technical University], 2011, no. 3 (57), pp. 91–95.
- 2. Elkin M. D., Dzhalmukhambetova Ye. A., Grechukhina O. N. Proyavlenie mezhmolekulyarnogo vzaimodeystviya v dimerakh uratsila [The manifestation of the intermolecular interaction in uracil dimers]. *Izvestiya SGU. Ser. Fizika* [News of Saratov State University. Series Physics], 2008, vol. 8, issue 2, pp. 24–30.
- 3. Elkin M. D., Babkov L. M. Uchet angarmonicheskogo smeshcheniya polos v modelnykh raschetakh kolebatelnykh spektrov dimerov s vodorodnoy svyazyu [The accounting of anharmonic band shift in model calculations of vibrational spectra of dimers with hydrogen bond]. *Izvestiya SGU. Ser. Fizika* [News of Saratov State University. Series Physics], 2011, vol. 11, issue 1, pp. 20–25.
- 4. Elkin P. M., Erman M. A. Matematicheskoe modelirovanie i dinamika dimerov uratsila i azauratsilov [Mathematical modeling and dynamics of uracil and azauracil dimers]. *Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta* [News of the Volgograd State Technical University], 2012, no. 10 (44), pp. 55–62.
- 5. Elkin P. M., Likhter A. M., Grechukhina O. N. Modelirovanie kolebatelnykh sostoyaniy 5- i 6-azauratsilov [Modeling of vibrational states of 5- and 6-azauracils]. *Prikaspiyskiy zhurnal: upravlenie i vysokie tekhnologii* [Caspian Journal: Management and High Technologies], 2009. no. 1 (5). pp. 48–52.
- 6. Erman Ye. A., Stefanova G. P., Ravcheeva N. A., Dzhalmukhambetova Ye. A., Grechukhina O. N., Alykova O. M. Sistemnyy analiz strukturno-dinamicheskikh modeley dimerov uratsila i azauratsilov v kondensirovannom sostoyanii [System analysis of structural and dynamic models of uracil and azauracil dimers in condensed state]. *Prikaspiyskiy zhurnal: upravlenie i vysokie tekhnologii* [Caspian Journal: Management and High Technologies], 2012, no. 3 (19), pp. 95–102
- 7. Fulara J., Nowak M. J., Lapinski L. Theoretical and matrix-isolation experimental study of the infrared spectra of 5-azauracil and 6-azauracil. *Spectrochimica Acta*, 1991, vol. 47A, no. 5, pp. 595–613.
 - 8. Frisch M. J. et al. Gaussian 03. Revision B.3. Pitttsburgh PA., Gaussian Inc., 2003.
- 9. Kumar H., Sharm M., Sharm R., Rai B. K., Joe H., Srivastava M., Rastogi V. K. FTIR and FT-Raman spectra of complex Cu(II) with 6-azauracil. *AIP Conference Proceeding* 1267, 2010, pp. 672–673.
- 10. Mitran R. A. Bascornea A. C. Some unusual spectral properties of 6-azauracil derivatives. *U.P.B. Sci. Bull. Ser. B*, 2011, vol. 73, no. 1, pp. 67–74.
- 11. Potter B. S., Palmer R. A., Withnall R., Chowdhry B. Z. Aza analog of nucleic acid bases: Infrared spectra of 5-azauracil and crystal structure of 5-azauracil monohydrate. *New Journal of Chemistry*, 1999, vol. 23, no. 1, pp. 117–122.

УДК 539.193/.194;535/33/34

МОДЕЛИРОВАНИЕ СТРУКТУРЫ И СПЕКТРОВ УРАЦИЛОВЫХ ОСНОВАНИЙ ДНК В КОНДЕНСИРОВАННОМ СОСТОЯНИИ

Эрман Евгений Анатольевич, кандидат технических наук, Астраханский государственный университет, 414056, Российская Федерация, г. Астрахань, ул. Татищева, 20a, e-mail: kofl@aspu.ru

Шагаутовнова Ильмира Тауфиковна, магистрант, Астраханский государственный университет, 414056, Российская Федерация, г. Астрахань, ул. Татищева, 20a, e-mail: kofl@aspu.ru

Тестова Диана Мухамеджановна, аспирант, Астраханский государственный университет, 414056, Российская Федерация, г. Астрахань, ул. Татищева, 20a, e-mail: dianet 88@mail.ru

Равчеева Наталья Александровна, магистрант, Астраханский государственный университет, 414056, Российская Федерация, г. Астрахань, ул. Татищева, 20a, e-mail: kofl@aspu.ru

Лихтер Анатолий Михайлович, доктор технических наук, доцент, Астраханский государственный университет, 414056, Российская Федерация, г. Астрахань, ул. Татищева, 20a, e-mail: kofl@aspu.ru

В данной статье на основании модельных квантовых расчетов параметров адиабатического потенциала мономеров и димеров гидроксиурацилов построены структурно-динамические модели соединений, выявлен характер поведения полос, интерпретированных как колебания фрагментов ОН и NH, по которым можно осуществить их спектральную идентификацию. Расчеты выполнены в ангармоническом приближении теории молекулярных колебаний, причем выбор базиса принципиального значения не имеет. Смещение полос не превышает величины $\sim 20~{\rm cm}^{-1}$, а качественный характер интенсивностей полос сохраняется.

Как следует из анализа приведенных в статье результатов модельных расчетов, надежным признаком спектральной идентификации мономеров моногидроксиурацилов являются сильные по интенсивности в ИК спектрах полосы в низкочастотном диапазоне спектра, интерпретированные как неплоские деформационные колебания связей NH (ρ_{NH}) и OH (χ_{OH}), в то время как конформеры мономеров дигидроксиурацила могут быть идентифицированы по наличию дублета в низкочастотном диапазоне спектра, интерпретированного как кругильные колебания гидроксильного фрагмента.

Результаты модельных расчетов мономеров и димеров гидроксиурацилов, их сопоставление с имеющимися экспериментальными данными по колебательным спектрам соединений дают основание привлекать метод функционала плотности для получения достоверных предсказательных оценок параметров адиабатического потенциала урациловых и цитозиновых оснований ДНК и выявления признаков спектральной идентификации для различных представителей данного класса соединений.

Ключевые слова: структурно-динамические модели, конденсированное состояние, колебательные спектры, адиабатический потенциал, ангармонизм колебаний

MODELING OF STRUCTURE AND SPECTRA OF DNA URACIL BASES IN CONDENSED STATE

Erman Yevgeniy A., Ph.D. (Engineering), Astrakhan State University, 20a Tatischev St., Astrakhan, 414056, Russian Federation, e-mail: kofl@aspu.ru

Shagautdinova Ilmira T., undergraduate student, Astrakhan State University, 20a Tatischev St., Astrakhan, 414056, Russian Federation, e-mail: kof1@aspu.ru

Testova Diana M., post-graduate student, Astrakhan State University, 20a Tatischev St., Astrakhan, 414056, Russian Federation, e-mail: dianet 88@mail.ru

Ravcheeva Natalya A., undergraduate student, Astrakhan State University, 20a Tatischev St., Astrakhan, 414056, Russian Federation, e-mail: kofl@aspu.ru