PRIKASPIYSKIY ZHURNAL: Upravlenie i Vysokie Tekhnologii (CASPIAN JOURNAL: Management and High Technologies), 2013, 1 (21) SYSTEM ANALYSIS, MATHEMATICAL MODELING

УДК 539.193/.194;535/33.34

### СТРУКТУРНО-ДИНАМИЧЕСКИЕ МОДЕЛИ ГИДРОКСИЦИТОЗИНОВ

Элькин Михаил Давыдович, доктор физико-математических наук, профессор, Астраханский государственный университет, 414056, Российская Федерация, г. Астрахань, ул. Татищева, 20a, тел. 8 (8512) 61-08-84, e-mail: elkinmd@mail.ru

*Смирнов Владимир Вячеславович*, кандидат физико-математических наук, доцент, Астраханский государственный университет, 414056, Российская Федерация, г. Астрахань, ул. Татищева, 20a, тел. 8 (8512) 61-08-84, e-mail: elkinmd@mail.ru

**Джалмухамбетова Елена Азатуллаевна,** кандидат физико-математических наук, доцент, Астраханский государственный университет, 414056, Российская Федерация, г. Астрахань, ул. Татищева, 20a, тел. 8 (8512) 61-08-84, e-mail: elena jalm@mail.ru

Алыкова Ольга Михайловна, кандидат педагогических наук, доцент, Астраханский государственный университет, 414056, Российская Федерация, г. Астрахань, ул. Татищева, 20a, тел. 8 (8512) 61-08-84, e-mail: elkinmd@mail.ru, kof@aspu.ru

*Гайсина Альфия Рафаилевна*, ассистент, Астраханский государственный университет, 414056, Российская Федерация, г. Астрахань, ул. Татищева, 20а, тел. 8 (8512) 61-08-84, e-mail: gaisinaalfiya@mail.ru

**Коломин Валентин Ильич,** доктор педагогических наук, профессор, Астраханский государственный университет, 414056, Российская Федерация, г. Астрахань, ул. Татищева, 20a, тел. 8 (8512) 61-08-84, e-mail: kof@aspu.ru

**Равчеева Намалья Александровна,** магистрант, Астраханский государственный университет, 414056, Российская Федерация, г. Астрахань, ул. Татищева, 20а, тел. 8 (8512) 61-08-84, e-mail: kof@aspu.ru

Цитозин относится к азотистым основаниям нуклеиновых кислот. Его соединения могут существовать в различных таутомерных формах. Одной из них являются гидроксицитозины при замене фрагмента С=О гидроксильной группой ОН. В работе представлены результаты модельных расчетов структуры и спектра возможных таутомеров мономеров и димеров гидроксицитозина. Исследование осуществлено в рамках метода функционала плотности DFT/b3LYP с учетом ангармонизма колебаний.

Согласно полученным результатам, значения геометрических параметров валентных связей и валентных углов пиримидинового кольца определяются только типом таутомера. Вид конформера определяет значение валентных углов  $A_{(NCO)}$ ,  $A_{(NCN)}$ . Наиболее интенсивными являются полосы в диапазоне выше  $1000~{\rm cm}^{-1}$ . Они интерпретированы как колебания валентных связей (Q) и валентных углов ( $\gamma$ ) шестичленного пиримидинового кольца, деформационные колебания связей СН ( $\beta$ ), NH ( $\beta_{\rm NH}$  и  $\beta_{\rm NH'}$ ). Для идентификации конформеров конкретного таутомера можно использовать как интенсивность соответствующих полос, так и возможный их сдвиг, достигающий  $\sim 50~{\rm cm}^{-1}$ . Характер проявления валентных колебаний связей ОН гидроксильного фрагмента хорошо согласуется с имеющимися данными.

**Ключевые слова:** цитозин, гидроксицитозин, димер, колебательные спектры, молекулярные спектры, ИК спектры, ангармонизм колебаний, адиабатический потенциал, силовые постоянные

### STRUCTURAL AND DYNAMIC MODELS OF HYDROXYCYTOSINE

*Elkin Mikhail D.*, D.Sc. (Physics and Mathematics), Professor, Astrakhan State University, 20a Tatishchev St., Astrakhan, 414056, Russian Federation, phone 8 (8512) 61-08-84, e-mail: elkinmd@mail.ru

## ПРИКАСПИЙСКИЙ ЖУРНАЛ: управление и высокие технологии № 1 (21) 2013 СИСТЕМНЫЙ АНАЛИЗ, МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

*Smirnov Vladimir V.*, Ph.D (Physics and Mathematics), Associate Professor, Astrakhan State University, 20a Tatishchev St., Astrakhan, 414056, Russian Federation, phone 8 (8512) 61-08-84, e-mail: elkinmd@mail.ru

**Dzhalmukhambetova Yelena A.,** Ph.D (Physics and Mathematics), Associate Professor, Astrakhan State University, 20a Tatishchev St., Astrakhan, 414056, Russian Federation, phone 8 (8512) 61-08-84, e-mail: elena jalm@mail.ru

Alykova Olga M., Ph.D. (Pedagogics), Associate Professor, Astrakhan State University, 20a Tatishchev St., Astrakhan, 414056, Russian Federation, phone 8 (8512) 61-08-84, e-mail: elkinmd@mail.ru, kof@aspu.ru

*Gaysina Alfiya R.*, Assistant, Astrakhan State University, 20a Tatishchev St., Astrakhan, 414056, Russian Federation, phone 8 (8512) 61-08-84, e-mail: gaisinaalfiya@mail.ru

*Kolomin Valentin I.*, D.Sc. (Pedagogics), Professor, Astrakhan State University, 20a Tatishchev St., Astrakhan, 414056, Russian Federation, phone 8 (8512) 61-08-84, e-mail: kof@aspu.ru

*Ravcheeva Natalya A.*, undergraduate student, Astrakhan State University, 20a Tatishchev St., Astrakhan, 414056, Russian Federation, phone 8 (8512) 61-08-84, e-mail: kof@aspu.ru

The article states that cytosine refers to the nitrogenous bases of nucleic acids, and that its compounds exist in different tautomeric forms. One of these, the critique relates, is hydroxycytosine, which replaces a fragmented C=O hydroxyl group of OH. The study – conducted within the framework of the DFT/b3LYP method of density functional with regard to anharmonic fluctuations – presents the results of model calculations on the structure and range of possible tautomers of monomer and dimer hydroxycytosine. According to the results, the values for geometric parameters of valence bonds and bond angle pyrimidine rings could only be determined by this type of tautomer. The document indicates that the view conformer defines the value of the valence angle A(NCO) as A(NCN). The most intensive bands were in the range above 1000 cm<sup>-1</sup>. They were interpreted as the vibrations of valence bonds (Q) and valence angles ( $\gamma$ ) in six-member aromatic pyrimidine rings, and the deformation vibrations of CH ( $\beta$ ), NH ( $\beta$ NH and  $\beta$ NH'). The blueprint says that a specific tautomer can be used to identify conformers, when the intensity of their respective bands increases and when their possible shift reaches approximately 50 cm<sup>-1</sup>. In conclusion, the commentary notes that the available data and the nature of the manifestations of the valence vibrations of relations of the OH hydroxyl fragment are in 'potential' agreement.

**Keywords:** cytosine, hydroxycytosine, dimer, vibrational spectra, molecular spectra, IR spectra, anharmonicity of vibration, adiabatic potential, force constants

**Введение.** Цитозин (рис.) относится к азотистым основаниям нуклеиновых кислот. Соединение может существовать в различных таутомерных формах. К их числу следует отнести и гидроксицитозины, когда фрагмент C=O заменяется гидроксильной группой OH за счет атома водорода или аминогруппы  $NH_2$ , или связи NH (N3H, N1H).

Таутометрия цитозина наглядно проявляется в колебательных спектрах соединения, поэтому спектроскопию относят к одному из наиболее информативных методов исследования структуры и динамики оснований нуклеиновых кислот. Теоретический анализ спектров, в совокупности с экспериментальными данными по спектрам ИК и КР, дает возможность судить о таутомерном составе исследуемого молекулярного объекта в различных фазовых состояниях.

Теоретическая интерпретация колебательных спектров цитозина осуществлялась неоднократно и касалась, как правило, двух таутомерных форм – кетонной и фенольной. Сошлемся для примера на работы [3, 4, 8–10, 12–14].

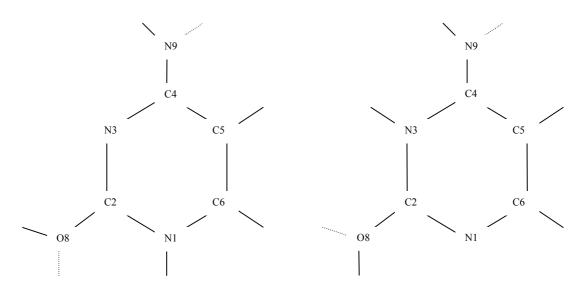



Рис. Молекулярные диаграммы N1H и N3H таутомеров гидроксицитозина

Возможности современных неэмпирических и гибридных квантовых методов расчета структуры и спектра сложных молекулярных соединений позволяют осуществить теоретический анализ таутомерного состава цитозина. Для изолированного состояния (в Агматрице) результаты такого исследования представлены в работе [4]. Однако гидроксицитозины представлены лишь двумя таутомерными формами, связанными с образованием гидроксильного фрагмента за счет атома водорода связи N1H. Обойден вниманием и вопрос о характере поведения колебательного спектра соединений при образовании димеров гидроксицитозинов.

В данной работе представлены результаты модельных расчетов структуры и спектра возможных таутомеров мономеров и димеров гидроксицитозина. Исследование осуществлено в рамках метода функционала плотности DFT/B3LYP [11] с учетом ангармонизма колебаний.

**Результаты модельных расчетов и их обсуждение.** При оптимизации геометрической структуры гидроксицитозинов в предположении плоской структуры соединений (симметрия  $C_s$ ) не удалось воспроизвести спектр низкочастотных крутильных колебаний для конформеров (0; 180) и (180; 180) таутомера N1H. Понижение симметрии указанных конформеров до группы  $C_1$  привело к результатам, представленным в табл. 1 и 2. Неплоская структура определяется, в первую очередь, значением двугранного угла  $D_{(3,2,8,12)}$ . Отклонением от компланарности параметров шестичленного цикла можно пренебречь.

Таблица 1 Оптимизированные значения геометрических параметров циклического фрагмента таутомеров гидроксицитозина

| Связи       | N1H  | N3H  | Связи              | N1H  | N3H  | Углы          | N1H   | N3H   | Углы                  | N1H   | N3H   |
|-------------|------|------|--------------------|------|------|---------------|-------|-------|-----------------------|-------|-------|
| $R_{(1,2)}$ | 1,38 | 1,29 | R <sub>(4,5)</sub> | 1,47 | 1,45 | $A_{(2,1,6)}$ | 118,0 | 115,3 | $A_{(3,4,5)}$         | 116,4 | 111,6 |
| $R_{(1,6)}$ | 1,39 | 1,38 | $R_{(4,9)}$        | 1,28 | 1,28 | $A_{(2,1,7)}$ | 119,6 | -     | $A_{(4,5,6)}$         | 120,4 | 120,3 |
| $R_{(2,3)}$ | 1,27 | 1,36 | $R_{(5,6)}$        | 1,34 | 1,35 | $A_{(1,2,3)}$ | 125,6 | 124,8 | A <sub>(4,5,10)</sub> | 118,8 | 117,9 |
| $R_{(2,8)}$ | 1,35 | 1,34 | $R_{(8,12)}$       | 0,97 | 0,97 | $A_{(2,3,4)}$ | 119,7 | 123,2 | $A_{(1,6,5)}$         | 119,9 | 124,9 |
| $R_{(3,4)}$ | 1,41 | 1,42 | $R_{(9,13)}$       | 1,02 | 1,02 | $A_{(2,3,7)}$ | _     | 120,3 | $A_{(1,6,11)}$        | 115,8 | 114,6 |

Таблица 2

Согласно результатам, приведенным в табл. 1, значения геометрических параметров валентных связей и валентных углов пиримидинового кольца определяются только типом таутомера. Вид конформера определяет значение валентных углов  $A_{(NCO)}$ ,  $A_{(NCN)}$ . В табл. 2 этот факт прослеживается наглядно. Оптимизированные значения длин связей NH, CH, OH хорошо совпадают с экспериментом из работы [2].

Оптимизированные значения геометрических параметров ОН и NH фрагментов таутомеров гидроксицитозина

|                         | Оп и Nn фрагментов таутомеров гидроксицитозина |       |       |       |                         |       |       |       |       |  |  |  |  |  |
|-------------------------|------------------------------------------------|-------|-------|-------|-------------------------|-------|-------|-------|-------|--|--|--|--|--|
| D <sub>(3,2,8,12)</sub> | 0                                              | 0     | 154   | 151   | D <sub>(1,2,8,12)</sub> | 180   | 180   | 0     | 0     |  |  |  |  |  |
| D <sub>(5,4,9,13)</sub> | 0                                              | 180   | 180   | 0     | $D_{(3,4,9,13)}$        | 180   | 0     | 180   | 0     |  |  |  |  |  |
| $A_{(2,8,12)}$          | 105,5                                          | 105,8 | 110,2 | 110,1 | $A_{(2,8,12)}$          | 111,2 | 111,5 | 105,9 | 105,9 |  |  |  |  |  |
| $A_{(4,9,13)}$          | 109,5                                          | 108,9 | 108,7 | 109,5 | $A_{(4,9,13)}$          | 110,4 | 112,5 | 110,3 | 112,3 |  |  |  |  |  |
| $A_{(1,2,8)}$           | 112,3                                          | 112,6 | 115,5 | 115,0 | $A_{(1,2,8)}$           | 117,9 | 118,2 | 120,7 | 121,2 |  |  |  |  |  |
| $A_{(3,2,8)}$           | 121,7                                          | 121,6 | 119,2 | 119,5 | $A_{(3,2,8)}$           | 117,8 | 117,5 | 114,0 | 113,4 |  |  |  |  |  |
| $A_{(3,4,9)}$           | 118,1                                          | 123,2 | 122,9 | 117,9 | $A_{(3,4,9)}$           | 116,3 | 124,6 | 116,8 | 124,8 |  |  |  |  |  |
| A(5.4.9)                | 126.0                                          | 120.3 | 120.2 | 125.8 | A(5.4.9)                | 132.1 | 124 0 | 131.5 | 123 7 |  |  |  |  |  |

Для оценки положения полос использовалось соотношение [11]

$$E_{v} = v_{s} \left( n_{s} + \frac{1}{2} \right) + \chi_{sr} \left( n_{s} + \frac{1}{2} \right) \left( n_{r} + \frac{1}{2} \right). \tag{1}$$

Для ангармонических констант  $\chi_{sr}$  использовались выражения из работы [7]

$$\chi_{ss} = \frac{1}{16} F_{ssss} - \frac{5}{48} \frac{(F_{sss})^2}{v_s} + \frac{1}{32} (F_{ssr})^2 (\Omega(s; s; -r) - \Omega(s; s; r) - 12\Omega(r; r; r)) (1 - \delta_{sr}), \quad (2)$$

$$\chi_{sr} = \frac{1}{16} F_{ssrr} - \frac{1}{8} (F_{ssr})^2 (\Omega(s; s; -r) + \Omega(s; s; r)(1 - \delta_{sr})) + \frac{3}{8} (F_{srt})^2 (\Omega(s; r; t) - \Omega(s; -r; t) + \Omega(s; -r; t) - \Omega(s; -r; -t)) \times \frac{1}{8} (F_{ssr})^2 (\Omega(s; r; t) - \Omega(s; -r; t) - \Omega(s; -r; -t)) \times \frac{1}{8} (F_{ssr})^2 (\Omega(s; r; t) - \Omega(s; -r; -t)) \times \frac{1}{8} (F_{ssr})^2 (\Omega(s; r; t) - \Omega(s; -r; -t)) \times \frac{1}{8} (F_{ssr})^2 (\Omega(s; r; t) - \Omega(s; -r; -t)) \times \frac{1}{8} (F_{ssr})^2 (\Omega(s; r; -t) - \Omega(s; -r; -t)) \times \frac{1}{8} (F_{ssr})^2 (\Omega(s; -r; -t) - \Omega(s; -r; -t)) \times \frac{1}{8} (F_{ssr})^2 (\Omega(s; -r; -t) - \Omega(s; -r; -t)) \times \frac{1}{8} (F_{ssr})^2 (\Omega(s; -r; -t) - \Omega(s; -r; -t)) \times \frac{1}{8} (F_{ssr})^2 (\Omega(s; -r; -t) - \Omega(s; -r; -t)) \times \frac{1}{8} (F_{ssr})^2 (\Omega(s; -r; -t) - \Omega(s; -r; -t)) \times \frac{1}{8} (F_{ssr})^2 (\Omega(s; -r; -t) - \Omega(s; -r; -t)) \times \frac{1}{8} (F_{ssr})^2 (\Omega(s; -r; -t) - \Omega(s; -r; -t)) \times \frac{1}{8} (F_{ssr})^2 (\Omega(s; -r; -t) - \Omega(s; -r; -t)) \times \frac{1}{8} (F_{ssr})^2 (\Omega(s; -r; -t) - \Omega(s; -r; -t)) \times \frac{1}{8} (F_{ssr})^2 (\Omega(s; -r; -t) - \Omega(s; -r; -t)) \times \frac{1}{8} (F_{ssr})^2 (\Omega(s; -r; -t) - \Omega(s; -r; -t)) \times \frac{1}{8} (F_{ssr})^2 (\Omega(s; -r; -t) - \Omega(s; -r; -t)) \times \frac{1}{8} (F_{ssr})^2 (\Omega(s; -r; -t) - \Omega(s; -r; -t)) \times \frac{1}{8} (F_{ssr})^2 (\Omega(s; -r; -t) - \Omega(s; -r; -t)) \times \frac{1}{8} (F_{ssr})^2 (\Omega(s; -r; -t) - \Omega(s; -r; -t)) \times \frac{1}{8} (F_{ssr})^2 (\Omega(s; -r; -t) - \Omega(s; -r; -t)) \times \frac{1}{8} (F_{ssr})^2 (\Omega(s; -r; -t) - \Omega(s; -r; -t)) \times \frac{1}{8} (F_{ssr})^2 (\Omega(s; -r; -t) - \Omega(s; -r; -t)) \times \frac{1}{8} (F_{ssr})^2 (\Omega(s; -r; -t) - \Omega(s; -r; -t)) \times \frac{1}{8} (F_{ssr})^2 (\Omega(s; -r; -t) - \Omega(s; -r; -t)) \times \frac{1}{8} (F_{ssr})^2 (\Omega(s; -r; -t) - \Omega(s; -r; -t)) \times \frac{1}{8} (F_{ssr})^2 (\Omega(s; -r; -t) - \Omega(s; -r; -t)) \times \frac{1}{8} (F_{ssr})^2 (\Omega(s; -r; -t) - \Omega(s; -r; -t)) \times \frac{1}{8} (F_{ssr})^2 (\Omega(s; -r; -t) - \Omega(s; -r; -t)) \times \frac{1}{8} (F_{ssr})^2 (\Omega(s; -r; -t) - \Omega(s; -r; -t)) \times \frac{1}{8} (F_{ssr})^2 (\Omega(s; -r; -t) - \Omega(s; -r; -t)) \times \frac{1}{8} (F_{ssr})^2 (\Omega(s; -r; -t) - \Omega(s; -r; -t)) \times \frac{1}{8} (F_{ssr})^2 (\Omega(s; -r; -t) - \Omega(s; -r; -t)) \times \frac{1}{8} (F_{ssr})^2 (\Omega(s; -r; -t) - \Omega(s; -r; -t)) \times \frac{1}{8} (F_{ssr})^2 (\Omega(s; -r; -t) - \Omega(s; -r; -t)) \times \frac{1}{8} (F_{ssr})^2 (\Omega(s; -r; -t) - \Omega(s; -r; -t)) \times$$

$$\times (1 - \delta_{sr})(1 - \delta_{st})(1 - \delta_{rt}) + L(a; sr)^2 \frac{\Omega(s; r; 0) + \Omega(s; -r; 0)}{2}. \tag{3}$$

В формулах (1)–(3)  $P_{\alpha} = L(\alpha;sr)Q^{s}P_{r}$ ,  $L(\alpha;sr)$  – постоянные Кориолиса;  $v_{s}$  – частоты гармонических колебаний (в см<sup>-1</sup>);  $Q^{s}$  – безразмерные нормальные колебательные координаты;  $F_{srtu}$  – кубические и квартичные силовые постоянные;  $\Omega(s; \pm r; \pm t) = (v_{s} \pm v_{r} \pm v_{t})^{-1}$  – резонансные функции;  $n_{s}$  – набор квантовых чисел колебательного состояния.

Результаты интерпретации колебательных спектров гидроксицитозинов представлены в табл. 1–6.

Отметим общие закономерности в характере поведения параметров полос (частоты колебаний в см $^{-1}$ , интенсивности в спектрах ИК в км/моль, интенсивности в спектрах КР Å $^4$ /а.е.м).

Наиболее интенсивными являются полосы в диапазоне выше  $1000~{\rm cm}^{-1}$ . Как правило, это полосы, интерпретированные как валентные колебания валентных связей (Q) и валентных углов ( $\gamma$ ) шестичленного пиримидинового кольца, деформационные колебания связей СН ( $\beta$ ), NH ( $\beta_{\rm NH}$  и  $\beta_{\rm NH}$ ). Для идентификации конформеров конкретного таутомера можно использовать как интенсивность соответствующих полос, так и возможный их сдвиг, достигающий  $\sim 50~{\rm cm}^{-1}$ . Обратим внимание на существенное различие интенсивностей полос в диапазоне  $1500-1400~{\rm cm}^{-1}$  для таутомеров N1H и N3H как явный признак из спектральной идентификации.

PRIKASPIYSKIY ZHURNAL: Upravlenie i Vysokie Tekhnologii (CASPIAN JOURNAL: Management and High Technologies), 2013, 1 (21) SYSTEM ANALYSIS, MATHEMATICAL MODELING

Таблица 3 Интерпретация фундаментальных колебаний конформеров N1H-гидроксицитозина

| Форма                                   | V <sub>эксп</sub> |                |     | 0   | 0; 1 |     |     | ); 0 | 180; 180 |     |
|-----------------------------------------|-------------------|----------------|-----|-----|------|-----|-----|------|----------|-----|
| колебаний                               | [3]               | $ u_{\rm ahr}$ | ИК  | КР  | ИК   | КР  | ИК  | КР   | ИК       | КР  |
| Q, γ, β                                 | 1730              | 1691           | 408 | 24  | 421  | 41  | 484 | 44   | 520      | 26  |
| Q, γ, β                                 | 1625              | 1642           | 83  | 82  | 45   | 72  | 38  | 62   | 56       | 76  |
| $Q, \beta_{NH}$                         | 1589              | 1596           | _   | _   | 150  | 19  | 230 | 9,3  | _        | _   |
| $Q, \beta_{NH}$                         | 1570              | 1577           | 189 | 35  | _    | _   | _   | _    | 258      | 23  |
| $Q, \gamma, \beta_{NH}$                 | 1495              | 1499           | _   | _   | _    | _   | 255 | 9,0  | 233      | 3,1 |
| $Q, \gamma, \beta_{NH}$                 | 1441              | 1449           | 249 | 3,5 | 276  | 3,9 | _   | _    | _        | _   |
| β                                       | 1380              | 1381           | 5,8 | 5,1 | 17   | 4,8 | 12  | 7,4  | 5,4      | 8,7 |
| $Q, \beta_{NH}, \beta_{OH}$             | 1338              | 1336           | 68  | 2,1 | _    | _   | 22  | 1,6  | 12       | 0,2 |
| $\beta$ , $\beta_{NH'}$                 | 1324              | 1306           | _   | _   | 236  | 2,7 | 76  | 1,0  | 37       | 1,7 |
| $\beta$ , $\beta_{NH'}$                 | 1258              | 1268           | 358 | 4,6 | 182  | 4,8 | _   | _    | _        | _   |
| $q_{CO}$ , $\beta_{OH}$ , $\beta$       | 1198              | 1208           | 45  | 3,0 | 5,5  | 4,0 | 178 | 1,0  | 99       | 0,6 |
| $\beta_{NH}$ , $\beta$ , $\beta_{NH}$ ' | 1196              | 1175           | 4,1 | 7,3 | 3,9  | 6,7 | 108 | 7,0  | 147      | 7,5 |
| $\beta$ , $\beta_{NH}$                  | 1113              | 1117           | 21  | 11  | 87   | 2,2 | 66  | 1,5  | 128      | 9,8 |
| $Q, \beta, \beta_{NH'}$                 | -                 | 1037           | 4,5 | 3,0 | 46   | 7,8 | 45  | 9,1  | 41       | 3,7 |
| Q, γ                                    | 948               | 965            | 58  | 1,8 | 7,6  | 0,6 | 0,6 | 0,8  | 25       | 3,0 |
| γ, Q                                    | 751               | 744            | 17  | 17  | 18   | 16  | 25  | 16   | 22       | 17  |
| γ                                       | 553               | 552            | 28  | 3,2 | 15   | 3,6 | 3,7 | 5,4  | 6,7      | 5,7 |
| γ                                       | _                 | 532            | 3,1 | 5,5 | 2,1  | 10  | 0,1 | 8,9  | 2,8      | 4,7 |
| $\beta_{CN}$ , $\beta_{CO}$             | 511               | 508            | 1,8 | 3,2 | 12   | 0,7 | 23  | 0,1  | 6,2      | 3,0 |
| $\beta_{CO}$                            | 342               | 357            | 46  | 2,2 | 32   | 1,9 | 11  | 2,2  | 16       | 1,8 |
| χ <sub>NH</sub> '                       | 888               | 881            | _   | _   | 56   | 3,4 | 52  | 3,5  | _        | _   |
| χ <sub>NH'</sub>                        | 812               | 842            | 82  | 3,7 | _    | _   | _   | _    | 89       | 3,6 |
| ρ, ρ <sub>CN</sub> , χ                  | 781               | 778            | 13  | 2,3 | 46   | 1,8 | 44  | 1,8  | 10       | 2,4 |
| ρςΝ, ρςο, χ                             | 660               | 661            | 8,4 | 1,3 | 17   | 1,9 | 39  | 2,0  | 19       | 1,0 |
| χ                                       | 350               | 381            | 69  | 3,5 | 122  | 3,0 | 88  | 1,1  | 57       | 1,9 |

**Примечание.** Курсивом отмечены дублеты полос с  $\Delta \sim 15$  см<sup>-1</sup>.

В низкочастотном диапазоне колебательного спектра заметно различие в интенсивностях полос, отнесенных к деформационным колебаниям связей CN и CO ( $\beta_{CO}$ ,  $\beta_{CN}$ ). В данном спектральном диапазоне (550–350 см<sup>-1</sup>) указанное различие можно использовать для идентификации типа конформера.

Наглядно тип таутомера и вид его конформеров отражают данные по параметрам полос колебательного спектра, отнесенных к валентным ( $q_{OH}$ ) и крутильным ( $\chi_{OH}$ ) колебаниям гидроксильного фрагмента, а также неплоским деформационным колебаниям связей NH ( $\rho_{NH}$ ). Здесь имеет место смещение полос и заметное различие в их интенсивности. Данные из табл. 4 позволяют выделить признаки спектральной идентификации конформеров двух таутомерных форм гидроксицитозина. Отметим только, что характер проявления валентных колебаний связей OH гидроксильного фрагмента хорошо согласуется с данными из работ [5, 6].

# ПРИКАСПИЙСКИЙ ЖУРНАЛ: управление и высокие технологии № 1 (21) 2013 СИСТЕМНЫЙ АНАЛИЗ, МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

Таблица 4 Интерпретация фундаментальных колебаний таутомеров и конформеров гидроксицитозина

| Форма             |                         | 0; 0 |     |                     | 0; 180 |         |             | 180; 0 |     |             | 180; 180 |     |  |
|-------------------|-------------------------|------|-----|---------------------|--------|---------|-------------|--------|-----|-------------|----------|-----|--|
| колебаний         | $\nu_{a_{\rm H\Gamma}}$ | ИК   | КР  | $\nu_{a_{H\Gamma}}$ | ИК     | КР      | $\nu_{ahr}$ | ИК     | КР  | $\nu_{ahr}$ | ИК       | КР  |  |
|                   | N1H-таутомер            |      |     |                     |        |         |             |        |     |             |          |     |  |
| $q_{\mathrm{OH}}$ | 3625                    | 59   | 157 | 3626                | 61     | 157     | 3593        | 92     | 88  | 3588        | 97       | 92  |  |
| $q_{ m NH}$       | 3440                    | 56   | 140 | 3440                | 55     | 140     | 3473        | 112    | 116 | 3473        | 113      | 117 |  |
| q <sub>NH</sub> ' | 3297                    | 3,0  | 149 | 3295                | 2,1    | 160     | 3295        | 1,1    | 158 | 3302        | 3,0      | 147 |  |
| $ ho_{ m NH}$     | 418                     | 65   | 1,3 | 413                 | 34     | 1,1     | 441         | 52     | 0,7 | 450         | 71       | 0,4 |  |
| χон               | 257                     | 122  | 2,7 | 259                 | 118    | 2,7     | 518         | 64     | 3,5 | 527         | 68       | 3,9 |  |
|                   |                         |      |     |                     | N3H-та | аутомер | )           |        |     |             |          |     |  |
| q <sub>OH</sub>   | 3591                    | 115  | 123 | 3592                | 117    | 114     | 3642        | 71     | 88  | 3633        | 78       | 90  |  |
| $q_{ m NH}$       | 3420                    | 37   | 80  | 3418                | 61     | 79      | 3399        | 11     | 84  | 3395        | 29       | 83  |  |
| q <sub>NH</sub> ' | 3296                    | 3,7  | 161 | 3342                | 4,0    | 140     | 3296        | 4,6    | 157 | 3342        | 4,6      | 141 |  |
| $ ho_{ m NH}$     | 583                     | 19   | 1,2 | 640                 | 73     | 2,7     | 506         | 83     | 2,3 | 583         | 125      | 3,4 |  |
| χон               | 508                     | 114  | 3,9 | 516                 | 116    | 3,3     | 117         | 29     | 1,1 | 231         | 32       | 2,3 |  |

Таблица 5 Интерпретация фундаментальных колебаний конформеров N3H-гидроксицитозина

| Форма                        | $V_{9KC\Pi}$ | $v_{ m ahr}$ | 0;  | 0   | 0; 1 | 80  | 180 | ); 0 | 180; | 180 |
|------------------------------|--------------|--------------|-----|-----|------|-----|-----|------|------|-----|
| колебаний                    | [3]          | <b>v</b> анг | ИК  | КР  | ИК   | КР  | ИК  | КР   | ИК   | КР  |
| Q, β, γ                      | 1622         | 1666         | 417 | 54  | 504  | 57  | 403 | 48   | 493  | 53  |
| Q, $\beta_{NH}$ , $\gamma$   | 1589         | 1610         | 346 | 19  | 271  | 18  | 290 | 23   | 267  | 19  |
| Q, β, γ                      | 1561         | 1550         | 316 | 37  | 401  | 24  | 173 | 35   | 203  | 24  |
| Q, $\beta_{NH}$ , $\gamma$   | 1496         | 1496         | 7,2 | 26  | 23   | 17  | -   | -    | -    | -   |
| Q, $\beta_{NH}$ , $\gamma$   | 1441         | 1451         | -   | -   | -    | -   | 21  | 29   | 99   | 19  |
| β, γ, Q                      | 1380         | 1393         | 27  | 5,3 | 2,6  | 5,1 | 64  | 9,9  | 34   | 8,1 |
| βон, β                       | 1333         | 1314         | 21  | 10  | 79   | 26  | 381 | 9,4  | 133  | 0,6 |
| $\beta_{NH'}$ , $\beta_{NH}$ | _            | 1295         | _   | _   | _    | _   | _   | _    | 226  | 22  |
| $\beta$ , $\beta_{NH}$       | 1257         | 1262         | 79  | 18  | 2,8  | 0,7 | 116 | 17   | 18   | 1,3 |
| $\beta_{OH}, \beta_{NH}$     | _            | 1165         | 302 | 3,9 | 245  | 4,5 | 55  | 5,7  | 54   | 6,4 |
| $\beta$ , $\beta_{NH'}$      | 1110         | 1115         | 20  | 5,5 | 73   | 14  | 46  | 6,1  | 43   | 14  |
| $\beta_{NH'}$ , $\beta$      | _            | 1046         | 57  | 4,7 | 25   | 0,3 | 37  | 4,4  | 73   | 0,2 |
| $\gamma$ , $\beta_{NH}$      | 984          | 980          | 33  | 2,3 | 67   | 5,7 | 6,2 | 1,5  | 28   | 5,0 |
| γ, Q                         | 948          | 937          | 25  | 0,7 | 20   | 0,8 | 26  | 1,0  | 21   | 1,2 |
| γ, Q                         | 751          | 757          | 9,0 | 16  | 7,6  | 17  | 30  | 14   | 27   | 15  |
| $\gamma$ , $\beta_{CO}$      | 557          | 572          | 1,2 | 6,0 | 0,8  | 5,6 | 13  | 3,6  | 8,7  | 3,8 |
| γ                            | 520          | 525          | 0,3 | 7,7 | 0,3  | 7,1 | 2,0 | 8,8  | 1,5  | 8,2 |
| $\beta_{CO}$                 | 498          | 501          | 16  | 0,3 | 30   | 1,7 | 10  | 2,2  | 2,3  | 3,0 |
| $\beta_{\mathrm{CN}}$        | 343          | 348          | 13  | 2,7 | 0,3  | 1,7 | 11  | 4,5  | 15   | 3,4 |
| χ <sub>NH</sub> , ρ          | 807          | 816          | 0,4 | 3,1 | 85   | 2,6 | 1,7 | 2,6  | 79   | 2,4 |
| $\chi_{\rm NH},\rho$         | 784          | 770          | 114 | 1,3 | 2,5  | 0,4 | 107 | 1,7  | 2,4  | 0,7 |
| $\rho_{CN}$ , $\chi_{NH}$    | _            | 675          | 23  | 2,3 | 6,4  | 0,3 | 9,7 | 2,3  | 13   | 0,5 |
| χ                            | _            | 402          | 54  | 0,3 | 28   | 0,6 | 77  | 0,3  | 45   | 0,3 |
| χ                            | _            | 201          | 0,9 | 0,9 | 5,9  | 1,3 | 0,0 | 1,3  | 21   | 0,8 |

PRIKASPIYSKIY ZHURNAL: Upravlenie i Vysokie Tekhnologii (CASPIAN JOURNAL: Management and High Technologies), 2013, 1 (21) SYSTEM ANALYSIS, MATHEMATICAL MODELING

Таблица 6 Интерпретация фундаментальных колебаний конформеров NH<sub>2</sub>-гидроксицитозина

| интер                            | прстац | ия фун       | дамен | тальн | DIA KU | леоа | нии конф                  | ормсро | ъ тите-   | тидро | исиц | MEDIN | па  |
|----------------------------------|--------|--------------|-------|-------|--------|------|---------------------------|--------|-----------|-------|------|-------|-----|
| Форма                            | νэксп  | 37           | К     | 1     | К      | 2    | Форма                     | νэксп  | 37        | К     | 1    | К     | 2   |
| колеб.                           | [3]    | $v_{ m ahr}$ | ИК    | КР    | ИК     | КР   | колеб.                    | [7]    | $v_{ahr}$ | ИК    | КР   | ИК    | КР  |
| $q_{\mathrm{OH}}$                | 3592   | 3601         | 87    | 103   | 76     | 88   | $\beta$ , $\beta_{NH}$    | 1085   | 1070      | 48    | 2,0  | 23    | 1,9 |
| $q_{NH}$                         | -      | 3538         | 39    | 62    | 36     | 61   | γ                         | 984    | 975       | 6,2   | 7,5  | 0,5   | 6,5 |
| $q_{NH}$                         | 3461   | 3423         | 64    | 162   | 57     | 160  | ho                        | 948    | 968       | 16    | 9,1  | 8,9   | 11  |
| $Q, \gamma^{,}, \gamma$          | 1622   | 1603         | 567   | 10    | 508    | 8,3  | $\rho_{CO}$ , $\rho_{CN}$ | 809    | 799       | 59    | 0,2  | 55    | 0,1 |
| $Q, \gamma^{,}, \gamma$          | 1570   | 1581         | 10    | 2,9   | 45     | 0,2  | $\rho_{CO}$ , $\rho$      | 781    | 776       | 11    | 20   | 17    | 17  |
| $Q, \beta, \gamma$               | 1561   | 1562         | 267   | 4,4   | 272    | 10   | γ                         | 600    | 592       | 0,6   | 5,5  | 3,3   | 5,9 |
| $Q, \beta, \gamma$               | 1495   | 1474         | 24    | 1,3   | 44     | 2,4  | Хон, ү                    | 553    | 550       | 103   | 8,8  | 112   | 10  |
| $Q, \beta, \gamma$               | 1430   | 1422         | 397   | 0,3   | 431    | 0,6  | $\beta_{CO}$ , $\chi$     | 511    | 500       | 14    | 1,5  | 17    | 0,8 |
| $\beta_{OH}$ , $q_{CO}$          | 1380   | 1363         | 50    | 5,5   | 53     | 6,7  | $\beta_{CO}$ , $\chi$     | 498    | 481       | 7,1   | 1,3  | 10    | 0,9 |
| $\beta$ , $\beta$ <sub>OH,</sub> | 1324   | 1314         | 178   | 0,1   | 8,0    | 0,1  | χ                         | 443    | 443       | 12    | 0,2  | 19    | 0,1 |
| Q, β                             | 1257   | 1260         | 17    | 3,0   | 7,3    | 2,7  | $\beta_{CN}$              | 342    | 337       | 10    | 1,0  | 5,1   | 1,6 |
| $\beta_{OH}$                     | 1198   | 1211         | 45    | 5,1   | 189    | 3,8  | XX                        | 297    | 301       | 260   | 1,7  | 262   | 1,8 |
| β                                | 1110   | 1098         | 34    | 5,6   | 20     | 5,3  | χ                         | -      | 217       | 12    | 0,1  | 3,9   | 0,2 |

Интересным вопросом является образование димеров гидроксиурацилов. В имеющихся в нашем распоряжении литературных данных по колебательным спектрам соединений он не просматривается.

Проведенные нами модельные расчеты показали, что димеры со слабой водородной связью между атомом кислорода гидроксильного фрагмента и атомом водорода соседней связи NH ( $R_{\rm CO...HN} \sim 2,02-2,08$  Å) могут образовывать мономеры, конформеры которых на рисунке обозначены сплошной линией для связи OH. Результаты модельных расчетов колебательных состояний таких димеров и их интерпретация по форме колебаний представлены в табл. 7.

Таблица 7 **Интерпретация фундаментальных колебаний димеров гидроксицитозина** 

| Форма                                  |                     | [имер N1H |     | Форма                        | Димер N3H      |     |     |  |  |
|----------------------------------------|---------------------|-----------|-----|------------------------------|----------------|-----|-----|--|--|
| колебаний                              | $\nu_{a_{H\Gamma}}$ | ИК        | КР  | колебаний                    | $\nu_{ m ahr}$ | ИК  | КР  |  |  |
| $q_{\mathrm{OH}}$                      | 3696                | 171       | 134 | $q_{\mathrm{OH}}$            | 3575           | 211 | 177 |  |  |
| $q_{ m NH}$                            | 3472                | 1453      | 709 | $q_{ m NH}$                  | 3340           | 737 | 404 |  |  |
| $q_{ m NH'}$                           | 3397                | 4,7       | 297 | $q_{ m NH'}$                 | 3304           | 8,5 | 312 |  |  |
| Q, γ, β                                | 1697                | 1058      | 76  | $Q, \beta, \gamma$           | 1677           | 776 | 83  |  |  |
| Q, γ, β                                | 1665                | 52        | 159 | Q, $\beta_{NH}$ , $\gamma$   | 1622           | 764 | 41  |  |  |
| Q, β <sub>NH</sub>                     | 1612                | 579       | 29  | $Q, \beta, \gamma$           | 1554           | 643 | 73  |  |  |
| $Q, \gamma, \beta_{NH}$                | 1533                | 552       | 15  | Q, $\beta_{NH}$ , $\gamma$   | 1504           | 11  | 61  |  |  |
| β                                      | 1402                | 19        | 11  | β, γ, Q                      | 1394           | 95  | 10  |  |  |
| $Q, \beta_{NH}, \beta_{OH}$            | 1370                | 108       | 2,7 | βон, β                       | 1333           | 73  | 15  |  |  |
| $\beta$ , $\beta_{NH'}$                | 1303                | 175       | 1,3 | $\beta_{NH'}$ , $\beta_{NH}$ | 1269           | 137 | 21  |  |  |
| $q_{CO}$ , $\beta_{OH}$ , $\beta$      | 1222                | 282       | 3,5 | $\beta$ , $\beta_{NH}$       | 1249           | 58  | 2,4 |  |  |
| $\beta_{NH}$ , $\beta$ , $\beta_{NH'}$ | 1197                | 271       | 11  | $\beta_{OH}$ , $\beta_{NH}$  | 1185           | 482 | 4,8 |  |  |
| $\beta$ , $\beta_{NH'}$                | 1131                | 110       | 5,2 | $\beta$ , $\beta_{NH'}$      | 1118           | 46  | 12  |  |  |
| $Q, \beta, \beta_{CNH'}$               | 1043                | 58        | 28  | $\beta_{NH'}$ , $\beta$      | 1041           | 83  | 12  |  |  |
| Q, γ                                   | 986                 | 2,5       | 5,0 | $\gamma$ , $\beta_{NH}$      | 983            | 52  | 4,7 |  |  |
| γ, β                                   | 927                 | 4,6       | 4,0 | γ, Q                         | 932            | 85  | 2,9 |  |  |
| γ, Q                                   | 754                 | 75        | 34  | γ, Q                         | 759            | 25  | 42  |  |  |

ПРИКАСПИЙСКИЙ ЖУРНАЛ:
управление и высокие технологии № 1 (21) 2013
СИСТЕМНЫЙ АНАЛИЗ, МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

| γ                           | 560 | 68  | 13  | $\gamma$ , $\beta_{CO}$       | 564 | 19  | 10  |
|-----------------------------|-----|-----|-----|-------------------------------|-----|-----|-----|
| γ                           | 532 | 0,3 | 29  | γ                             | 526 | 0,5 | 15  |
| $\beta_{CN}$ , $\beta_{CO}$ | 496 | 90  | 1,9 | $\beta_{CO}$                  | 495 | 29  | 0,5 |
| $\beta_{\mathrm{CO}}$       | 365 | 27  | 4,1 | $\beta_{\mathrm{CN}}$         | 353 | 18  | 5,7 |
| ρ                           | 948 | 0,3 | 1,2 | ρ                             | 970 | 0,5 | 1,6 |
| χ <sub>NH'</sub>            | 880 | 101 | 6,7 | χ <sub>NH'</sub> , ρ          | 777 | 265 | 0,0 |
| ρ, ρ <sub>CN</sub> , χ      | 798 | 82  | 2,7 | χ <sub>NH'</sub> , ρ          | 822 | 0,5 | 0,0 |
| ρ <sub>сο</sub> , χ         | 733 | 0,1 | 6,3 | ρ <sub>CO</sub> , χ           | 734 | 9,7 | 0,0 |
| ρςΝ, ρςο, χ                 | 675 | 106 | 3,9 | _                             |     | _   | Ī   |
| $ ho_{ m NH}$               | 612 | 61  | 1,2 | $\rho_{\rm NH},\rho_{\rm CN}$ | 668 | 105 | 0,0 |
| χон                         | 511 | 112 | 2,1 | χон                           | 500 | 160 | 0,0 |
| χ                           | 407 | 24  | 0,1 | χ                             | 409 | 64  | 0,0 |

Характерным является смещение полос, интерпретированных как валентные колебания связей OH, NH и NH' (фрагмента CNH), что можно использовать в задаче спектральной идентификации димеров гидроксицитозина. По сравнению с мономерами имеет место заметное смещение в высокочастотный диапазон ( $\sim 100~{\rm cm}^{-1}$ ) полос, интерпретированных как неплоские колебания связей NH, участвующих в образовании водородной связи. В качестве признака идентификации можно использовать сильные по интенсивности полосы в ИК спектрах, отнесенные к крутильным колебаниям связей NH' ( $\chi_{\rm NH'}$ ).

Заключение. Результаты представленных модельных расчетов, их сопоставление с имеющимися экспериментальными данными дают основание утверждать, что метод функционала плотности DFT/B3LYP позволяет получить достоверные предсказательные данные для интерпретации колебательных спектров таутомеров цитозина и выявить признаки спектральной идентификации конформеров таутомерных форм.

### Список литературы

- 1. Браун П. А. Введение в теорию колебательных спектров / П. А. Браун, А. А. Киселев. Ленинград : Изд-во ЛГУ, 1983. 232 с.
- 2. Свердлов Л. М. Колебательные спектры многоатомных молекул / Л. М. Свердлов, М. А. Ковнер, Е. П. Крайнов. Москва : Наука, 1970. 559 с.
- 3. Тен  $\Gamma$ . Н. Влияние водородной связи на структуру и колебательные спектры комплементарных пар оснований нуклеиновых кислот. III. Гуанин-цитозин /  $\Gamma$ . Н. Тен, А. А. Яковлева, В. В. Нечаев, В. И. Баранов // Журнал структурной химии. − 2012. − Т. 52, № 5. − С. 855–864.
- 4. Тен  $\Gamma$ . Н. Теоретический анализ таутомерного состава цитозина, изолированного в Агматрице /  $\Gamma$ . Н. Тен, Н. Б. Зотов, В. И. Баранов // Оптика и спектр. -2009. Т. 107, № 2. С. 251–259.
- 5. Элькин М. Д. Моделирование колебательных состояний гидроксизамещенных фенола / М. Д. Элькин, А. Р. Гайсина, Е. А. Джалмухамбетова, О. Н. Гречухина // Прикаспийский журнал: управление и высокие технологии. − 2011. − № 2 (14). − С. 55–61.
- 6. Элькин М. Д. Структурно-динамические модели флавоноидов. Моногидроксифлавоны / М. Д. Элькин, А. Р. Гайсина, А. М. Лихтер, Д. М. Нуралиева, В. В. Смирнов, Е. Ю. Степанович, И. Т. Шагаутдинова // Естественные науки. 2012. № 4 (41). С. 133–140.
- 7. Элькин М. Д. Учет ангармонического смещения полос в модельных расчетах колебательных спектров димеров с водородной связью / М. Д. Элькин, Л. М. Бабков // Известия СГУ. Серия «Физика» . -2011.-T. 11, № 1.-C. 20-24.
- 8. Эрман М. А. Квантово-механический анализ молекулярной динамики цитозина методом функционала плотности / М. А. Эрман, В. И. Коломин // Проблемы оптической физики. Материалы SFM-2006. Саратов, 2007. С. 241–247.
- 9. Chandra A. K. Theoretical study of the protonational and deprotonational of cytosine / A. K. Chandra, M. T. Nguyen, T. H. Zeegers-Huyskens // Mol. Structure. 2000. Vol. 519. P. 1–11.

## PRIKASPIYSKIY ZHURNAL: Upravlenie i Vysokie Tekhnologii (CASPIAN JOURNAL: Management and High Technologies), 2013, 1 (21) SYSTEM ANALYSIS, MATHEMATICAL MODELING

- 10. Civcir P. U. A theoretical study of tautomerism of cytosine, thymine, uracil theie 1-methyl analogues in the gas and aqueous phase using AM1 and PM3/ P. U. Civcir. // Mol. Structure. -2000. Vol. 532. P. 157–169.
  - 11. Gaussian 03. Revision B.3. / M. J. Frish et al. Pitttsburgh PA. : Gaussian Inc., 2003.
- 12. Rosenberg M. Low temperative FTIR spectroscopy and hydrogen bonding in cytosine polycrystales / M. Rosenberg, G. Shohan, I. Reva, R. Fausto // Spectrochim. Acta. 2004. –Vol. 60A. P. 463–470.
- 13. Sahu P. K. A Density Functional Theory study for the hydrogen-bonded nucleic acid Base pair: cytosine dimmer/ P. K. Sahu, R. K. Mishra, S. L. Lee // Phys. Chem. 2005. Vol. 109. C. 2887–2893.
- 14. Subramanian V. Comparative study on the vibrational IR spectra of cytosine and thiocytosine by various semi-empirical quantum methods / V. Subramanian, K. Chitra, K. Venkatesh, S. Sanker, T. Ramasan // Chem. Physics Letter. 1997. Vol. 264. P. 92–100.

#### References

- 1. Braun P. A., Kiselev A. A. *Vvedenie v teoriyu kolebatelnykh spektrov* [Introduction to the theory of vibrational spectra]. Leningrad, Leningrad State Univ. Publ. House, 1983. 232 p.
- 2. Sverdlov L. M., Kovner M. A., Kraynov Ye. P. *Kolebatelnye spektry mnogoatomnykh molekul* [Vibrational spectra of multiatomic molecules]. Moscow, Nauka, 1970. 559 p.
- 3. Ten G. N., Yakovleva A. A, Nechaev V. V., Baranov V. I. Vliyanie vodorodnoy svyazi na strukturu i kolebatelnye spektry komplementarnykh par osnovaniy nukleinovykh kislot. III. Guanin-tsitozin [The influence of hydrogen bonding on the structure and vibrational spectra of complementary pairs of nucleic acids. III. Guanine-cytosine]. *Zhurnal strukturnoy khimii* [Journal of Structural Chemistry], 2012, vol. 52, issue 5, pp. 855–864.
- 4. Ten G. N., Zotov N. B., Baranov V. I. Teoreticheskij analiz tautomernogo sostava citozina, izolirovannogo v Ar-matrice [Theoretical analysis of tautomeric cytosine isolated in Ar-matrix]. *Optika i spektr* [Optics and spectrum], 2009, vol. 107, issue 2, pp. 251–259.
- 5. Elkin M. D., Gaysina A. R., Dzhalmukhambetova Ye. A., Grechukhina O. N. Modelirovanie kolebatelnykh sostoyaniy gidroksizameshchennykh fenola [Simulation of vibrational states of hydroxysubstituted phenol]. *Prikaspiyskiy zhurnal: upravlenie i vysokie tekhnologii* [Caspian Journal: Management and High Technologies], 2011, no. 2 (14), pp. 55–61.
- 6. Elkin M. D., Gaysina A. R., Likhter A. M., Nuralieva D. M., Smirnov V. V., Stepanovich Ye. Yu., Shagautdinova I. T. Strukturno-dinamicheskie modeli flavonoidov. Monogidroksiflavony [Structural and dynamic models of flavonoids. Monohydroxyflavones]. *Yestestvennye nauki* [Natural Science], 2012. no. 4 (41), pp. 133–140.
- 7. Elkin M. D., Babkov L. M. Uchet angarmonicheskogo smeshcheniya polos v modelnykh raschetakh kolebatelnykh spektrov dimerov s vodorodnoy svyazyu SGU [The accounting of anharmonic band shift in model calculations of vibrational spectra of dimers with hydrogen bond]. *Izvestiya Saratovskogo gosudarstvennogo universiteta*. Seriya «Fizika» [Izvestiya of Saratov State University. Series "Physics"], 2011, vol. 11, issue 1, pp. 20–25.
- 8. Erman M. A., Kolomin V. I. Kvantovo-mekhanicheskiy analiz molekulyarnoy dinamiki tsitozina metodom funktsionala plotnosti [Quantum-mechanical analysis of molecular dynamics of cytosine by functional density method]. *Problemy opticheskoy fiziki. Materialy SFM-2006* [Problems of optical physics. Proceedings of SFM-2006]. Saratov, 2007, pp. 241–247.
- 9. Chandra A. K., Nguyen M. T., Zeegers-Huyskens T. H. Theoretical study of the protonational and deprotonational of cytosine. *Mol. Structure*, 2000, vol. 519, pp. 1–11.
- 10. Civcir P. U. A theoretical study of tautomerism of cytosine, thymine, uracil theie 1-methyl analogues in the gas and aqueous phase using AM1 and PM3. *Mol. Structure*, 2000, vol. 532, pp. 157–169.
  - 11. Frish M.J. et al. Gaussian 03. Revision B.3. Pitttsburgh PA., Gaussian Inc., 2003.
- 12. Rosenberg M., Shohan G., Reva I., Fausto R. Low temperative FTIR spectroscopy and hydrogen bonding in cytosine polycrystales. *Spectrochim. Acta*, 2004, vol. 60A, pp. 463–470.
- 13. Sahu P.K., Mishra R. K., Lee S. L. A Density Functional Theory study for the hydrogen-bonded nucleic acid Base pair: cytosine dimmer. *Phys. Chem*, 2005, vol. 109, pp. 2887–2893.
- 14. Subramanian V, Chitra K., Venkatesh K., Sanker S., Ramasan T. Comparative study on the vibrational IR spectra of cytosine and thiocytosine by various semi-empirical quantum methods. *Chem. Physics Letter*, 1997, vol. 264, pp. 92–100.